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Section 1

CSC473: Advanced Algorithms

Subsection 1.1

Global Min-Cut (Karger’s Contraction Algorithm)

Given an undirected, unweighted, and connected graph G = (V, E), return the smallest set
of edges that disconnects G

Figure 1. Example of global min-cut. Note that the global min-cut is not necessarily unique

An example of where this may
be useful is in computer net-
works where we can measure
the resiliency of a network by
how many cuts must be made
before a vertex (or many) get
disconnected

Lemma 1 If the min cut is of size ≥ k, then G is k-edge-connected

It may be more convenient to return a set of vertices instead

Definition 1
S, T ⊆ V, S ∩ T = ∅ (1.1)

E(S, T ) = {(u, v) ∈ E : u ∈ S, v ∈ T} (1.2)

The global min-cut is to output S ⊆ V such that S ̸= ∅, S ̸= V , such that E(S, V \ S) is
minimized.

Comment Note that the min-cut-max-flow problem is somewhat of a dual to the global min-cut prob-
lem; the min-cut-max-flow problem imposes a few more constraints than the global min-cut
algorithm i.e. having a directed and weighted graph as well as the notion of a source or sink.

• Input: Directed, weighted, and connected G = (V, E), s ∈ V, t ∈ V

• Output : S such that s ∈ S, t /∈ S such that |E(S, V \ S)| is minimized

We can kind of intuitively see that the global min-cut can be taken to the minimum of all
max-flows across the graph. So we can take the max-flow solution and then reduce it to find
the global min cut.

Question: how many times will we have to run max-flow to solve the global min-cut
problem? Naively, we may fix t to be an arbitrary node, then try every other s ̸= t to find the
s− t min-cut to get the best global min-cut.
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We know from previous courses that the Edmonds-Karp max-flow algorithm will run in
O(nm2) = O(n5), which makes our global min-cut algorithm O(n6). However, there is
a paper recently published which gives an algorithm for min-cut in nearly linear time, i.e
O(m1−O(1)) = O(n2) which gives a global min-cut runtime of O(n3).

A randomized algorithm will be presented that solves this problem in O(n2 log2 n)

Definition 2 The Contraction operation takes an edge e = (u, v) and contracts it into a new node w
such that all edges connected to u, v now connect to w and u, v are removed. Note that the
contracted nodes can be supernodes themselves.

Figure 2. Example of a series of contractions

contraction(G = (V, E))
1 while G has more than 2 supernodes
2 Pick an edge e = (u, v) uniformly at random
3 Contract e, remove self-loops
4 Output the cut (S, V \ S) corresponding to the two super nodes

The contraction algorithm then recurses onG′, choosing an edge uniformly at random and
then contracting it. The algorithm terminates when it reaches a G′ with only two supernodes
v1, v2. The sets of nodes contracted to form each supernode S(v1), S(v2) form a partition of
V and are the cut found by the algorithm.

1.1.1 Analysis

The algorithm is still random, so there’s a chance that it won’t find the real global min-cut.
Perhaps unintuitively the success probability is in fact not exponential, but rather only poly-
nomially small. Therefore running the contraction algorithm a polynomial number of times
can produce a global min-cut with high probability.

Lemma 2 The contraction algorithm returns a global min cut with probability at least 1
(n

2)
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Proof Take a global min-cut (A, B) of G and suppose it has size k, i.e. there is a set F of k edges
with one end in A and the other in B. If an edge in F gets contracted then a node of A
and a node in B would get contracted together and then the algorithm would no longer
output (A, B), a global min-cut. An upper bound on the probability that an edge in F
is contracted is the ratio of k to the size of E. A lower bound on the size of E can be
imposed by noting that if any node v has degree < k then (v, V \ v) would form a cut of
size less than k – which contradicts our first assumption that (A, B) is a global min-cut;
|E| ≥ 1

2 kn So the probability than an edge in F is contracted at any step is

k

( kn
2 )

= 2
n

(1.3)

Note that here we use the number of vertices instead of the number of edges since each
contraction removes (combines) one vertex, whereas since the amount of edges after a
contraction can be very difficult to calculate.
Next, let’s inspect the algorithm after j iterations. There will be n − j supernodes in G′

and we can take that no edge in F has been contracted yet. Every cut of G′ is a cut of G,
so there are at least k edges incident to every supernode of G′1 1since the min-cut has k edges. Therefore G′ has at least
1
2 k(n− j) edges, and so the probability than an edge of F is contracted in j +1 is at most

In terms of edges, it would
be k

mi−1
, but again, edges

are difficult to work with
so we’ll do it w.r.t the ver-
tices/supernodes

k
1
2 k(n− j)

= 2
n− j

(1.4)

It follows that the probability that an edge of F is not contracted in j + 1 is at least

P (Ai|A1 . . .i−1) ≥ n− i− 1
n− i + 1 = 1− 2

n− i + 1 (1.5)

The global min-cut will be actually returned by the algorithm if no edge of F is contracted
in iterations 1− n.
What we want to know, then, is what is the probability of this algorithm never making a
mistake?

This prof uses commas to in-
dicate intersection...

P (A1 . . . An−1) = P (A1)P (A2|A1)P (A3|A1, A2) . . . P (An−2|A1, A2, . . . , An−3)
(1.6)

From what we found previously we know that this is

≥ n− 2
n
× n− 3

n− 1 ×
n− 4
n− 2 . . .× 2

4 ×
1
3 = 2

n(n− 1) = 1(
n
2
) (1.7)

This gives us a bound of O(n2) using the n2 term from the number of contractions and then
n2 to get correct output with constant probability of success.

The key observation is that early contractions are much less likely to lead to a mistake,
which leads us to the Karger-Stein min cut.

Subsection 1.2

Karger-Stein Min Cut Algorithm

This algorithm solves the global min-cut problem in O(n2 log2 n) by taking advantage of the
earlier cuts; it stops the contraction algorithm after an arbitrary fraction of contractions steps
and then recursively contracts more carefully.
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Comment Exercise: show the following:
The probability of no mistake in the first i contractions

P (A1, A2, . . . Ai) ≥
(n− i)(n− i− 1)

n(n− 1) (1.8)

min-cut(G = (V, E))
1 if G has two supernodes corresponding to S, Ŝ

2 return S, Ŝ
3 Run the contraction algorithm until n√

2 + 1 supernodes remain
4 Let G′ be the resulting contracted multigraph
5 (S1, Ŝ1) = min-cut(G′)
6 (S2, Ŝ2) = min-cut(G′)
7 return the cut (Si, Ŝi) with the smaller number of edges

Theorem 1 Min-cut(G) runs in O(n2 log n) and outputs a min cut of G with probability of at least
1

O(log n) So repeat the algorithm
O(log(n)) times to get con-
stant probability of success,
leading to O(n2 log2 n)
runtime

Proof The intuition for this can be developed by drawing out a recursion tree for this problem.
At each level the number of recursive call doubles, but the time it takes for each sub-call
halves as well. This means that the total runtime for each level is n2. As for the total time
will just be O(n2 log(n)), since we know the height of the recursion tree to be log n.
More formally, the recursion may be described with

T (n) ≤ 2T ( n√
2

+ O(n2)) (1.9)

Which can 2 2I think?be solved with the master theorem.

Theorem 2 We may also want to understand the probability of success. Let’s define P (d) to be the
probability of the algorithm being successful at depth d in the recursion tree3 3It follows that P (h) is the probability

of the algorithm’s success on termina-
tion.• We may deem a node in the recursion tree to be successful if it survives the contrac-

tions.

– Since there must be a leaf node in a recursion tree that successfully produces a
min-cut that corresponds to amin-cut, theremust also be a sequence of successful
nodes from the root to said min cut.

• P (d) as the probability that a node at depth d is successful, conditioned on it’s ances-
tors being successful

• Base case: P (0) ≥ 1
2 (will assume = 1

2 , worst case)

• Inductive step: P (d) ≥ 1
2 (1− (1− (P (d− 1)))2) = 1

2 (2P (d− 1)− P (d− 1)2)

– At each level the probability of success is at least 1
2 , conditioned on the ancestors

being successful.
– P (d− 1) is the probability of there being a successful path from the left child to

the root at depth d− 1. The same probability holds for the right sub-child
– The two subtrees are disjoint
– (1− P (d− 1)) gives the probability of there not being a successful path from a

left/right child to the root, (1− P (d− 1))2 gives the probability that neither of
these events hold.
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– So the probability of success at d is 1 minus the prior probability.

What remains now is solving this recursion.

P (d) = P (d− 1)− 1
2P (d− 1)2 (1.10)

Non-linear recursions are difficult since you really just have to make a good guess. It’s
reasonable to expect this relation to be on the order of

P (d) ≥ 1
d

(1.11)

And then as it turns out4 4Proof by trust-the-profit’s

P (d) = 1
d + 2 (1.12)

And then this can be checked by doing an induction proof, but I’m not going to go and do
that.

Note that there are two types
of randomized algorithms:

• Monte Carlo algo-
rithms: bound on
worst-case time & pro-
duces a correct answer
with a probability ≥
some constant

• Las Vegas algorithms:
bound on the expected
value of running time,
but the output is always
correct

Our contraction algorithm is a
Monte-Carlo algorithm

Subsection 1.3

Closest Pair Problem

The closest pair problem is simple: given the Input: A set P of n points in the plane, find the
Output: A pair of points p, q ∈ P such that d(p, q)5 5Some distance metric, often euclidean

or hamming distance
is minimized.

We are already familiar with a few approaches:

• Brute force: O(n2)

• Divide and conquer (CLRS 33.4): O(n log n)

A tighter linear time boundmay, remarkably, be achieved through a randomized algorithm
and a slightly different approach to hashing than what we are used to.

rabins-algorithm(P )
1 Randomly order P as p1, p2 . . . pn

2 cp = {p1, p2}
3 ∆ = dist(p1, p2)
4 for i = 3 to n
5 if ∃ q ∈ Pi−1 = p1 . . . pi−1 s.t. dist(p, q) < ∆
6 cp = {p, q}
7 ∆ = dist(p, q)

Rabin’s algorithm considers the points in random order, maintaining a current minimum
pair distance δ as points are processed. At every point p we look in the vicinity of p to see if
any of the previously considered points are within δ from p, i.e. will form a closer pair. The
tricky part of this algorithm is performing the check_closest operation in constant time.

Considerations to make:

• It is possible to randomly order P from n! possible orderings in O(n) time (CLRS refer-
ence for later)

• What data structure to use for line 5? I.e. finding q such that dist(p, q) < ∆

– Note: take q that is closest to pi in line 5 (algorithm is unclear as to pick p1 or p2)
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– This data structure must store a set Q = Pi−1 = p1, p2, pi−1 points and offer the
following operations

∗ Note: ∆(Q) = δ = minp,q∈Q,p̸=qdist(p, q)
∗ insert-fast(p) inserts p into Q assuming min {dist(p, q) : q ∈ Q} ≥ δ

∗ insert-slow(p) inserts p into Q even if min {dist(p, q) : q ∈ Q} < δ

∗ check-closest(p) checks if min {dist(p, q) : q ∈ Q} < ∆ and if so returns
the closest point q ∈ Q to P , otherwise returns NIL. Runs in O(1) expected
time

Here the, well, structure, of the data structure begins to become apparent. By making the
assumption that the smallest distance so far is δ we can perform the requisite lookup/insertions
in constant time (only need to look in a ring of size δ around p) – and if we do happen to find
a yet-closer pair of points then some modification would have to be made to maintain the δ
invariant.

Here’s Rabin’s algorithm in more detail:

rabins-algorithm(P )
1 Randomly order P as p1, p2 . . . pn

2 cp = {p1, p2}
3 ∆ = dist(p1, p2)
4 Initialize the data structure with {}
5 for i = 3 to n
6 q = check-closest(p1)
7 if q == NIL
8 insert-fast(pi)
9 else
10 cp = {p1, q}
11 ∆ = dist(p1, q)
12 insert-slow(p1)

It’s fairly trivial to see that this algorithm has a O(n2) worst case runtime; Line 1 is O(n),
and all the inserts run in O(1) expected. In the worst case event that we would insert-slow
which would cause the runtime to tend towards O(n2). It is our job now to find out just how
often this would happen, and as it turns out it really isn’t altogether that often – leading to an
O(n) runtime. Before that, however, we still need to formalize the data structure that enables
this black magick? Idea: draw grid with side length δ

2 . If a point q being inserted belongs to
the same sub-square Sst as p, then d(p, q) < δ. If we take Q to be the set of points currently
in the data structure, then since

δ√
2

< δ (1.13)

No two points in Q fall within the same square.
A partial converse is also true: If a point q being inserted that gives dist(p, q) ≤ δ than

each other must fall in either the same subsquare or in very close subsquares.
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Implementation-wise we require a data structure with fast lookup of these subsquares. A
natural data structure for this is a dictionary.

As for the key we use to index into the dictionary – this will depend on the specific space
across which we are finding the closest points. For floating point Cartesian coordinates we
may use use the floor function.

• Insert-fast: just insert into the dictionary

• Insert-slow: must do the rather dramatic operation of rebuilding the data structure with
new δ, since the old data structure is now entirely invalidated.

• Check-closest: Must look in the 25 squares around p for points closer than δ. If there are
more just return the closest. 6 6Note that we have to search the 25

squares around p since p may be lo-
cated anywhere within the grid cell. In
the worst-case situation it lies on the
edge of a grid cell and therefore wemust
search up to two sub-squares away.

1.3.1 Analysis

• Recall Pi = {p1 . . . pi}. Define (for i ≥ 3) Zi =
{

1 ∆(Pi) < ∆(Pi−1)
0 otherwise

– This is a random event since the order of points is random. The first case represents
a slow insert and the other a fast insert. If we take Zi denote the probability of a
slow insert, then the runtime of the algorithm is given by:

∗ T ≤ n +
∑n

i=3(1 + iZi)
∗ n for the random init, 1 for fast insert and iZi for a slow insert

– We are primarily interested in the expected value of T , not the worst-case runtime.

E[T ] ≤ n + (n− 2) +
n∑

i+3
i · EZi by linearity of expectation

= 2n− 2 +
n∑

i=3
i · P (Zi = 1)

(1.14)

• Now, what’s P (Zi) = 1?

– Let {pi, pk} be a closest pair in Pi

– If Zi = 1 then pi or pk is pi

– P (Zi = 1) ≤ 2
i (There are two bad options out of i options)
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• By combining the above two results we can obtain the following bound on the algorithm
running cost

E[T ] ≤ 2n− 2 +
n∑

i=3
i · P (Zi = 1) = 2n− 2 +

n∑
i=3

i · 2
i
≤ O(n) (1.15)

Subsection 1.4

Tutorial: Locality Sensitive Functions

Figure 3. Q1

Comment

Randomly sample a dimension7 7O(1)and then the probability of the hash functions being equal
to each other is proportional to the hamming distance between the strings (consider random...).

Figure 4. Q2

1. Sample a dimension d uniformly at random

2. In that dimension, assign each letter on k − 1 to {0, 1}uniformly at random

P(equal) is 1- sum not equal / 2 = hamming dist / 2 * d (d letters)
This works because P (g(x) ̸= g(y)|selected dimension i) = |{ixi ̸=yi}

2d .
O(k) since you have to sample it k times
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Figure 5. Q3

Comment I honestly don’t really know how this one works :(

• pick a dimension at random

• Sample a t ∈ (0, 1) uniformly at random

• if the value smaller than t -> 0, larger than t -> 1

• P(g(x) != g(y) | selected dim i+ = |x_i - y_i

• given 0 ≤ a ≤ b ≤ 1, P (a ≤ t < b) is

Subsection 1.5

Nearest Neighbours & Clustering

Suppose we have a data set P of n entries8 8which usually are points in some met-
ric space, i.e. a space that is reflexive,
symmetric, and satisfies the triangle in-
equality

, how may we design a data structure that can
efficiently output a point y ∈ P that has the smallest distance dist(x, y) to x?

1.5.1 Hamming Distance

Definition 3 Hamming Distance: number of bits that differ between two strings

dist(x, y) = | {i : xi ̸= yi} | (1.16)

Let there be a data set P containing n strings with d bits each, i.e. P is a subset of {0, 1}d.
We want our data structure to support the following operations:

• insert(P, x): insert x into P

• nearestneighbour(P, x): output the closest y to x in P

Exercise: Give a data structure
for which we have O(1) insert
and O(2d) lookup

As it turns out this problem is nontrivial; this problem suffers from the curse of dimension-
ality.

We can relax the time bounds by relaxing the constraints on the problem somewhat to the
approximate nearest neighbour problem

Definition 4 ApxNearestNeighbour(P, x): output a string y ∈ P such that

min {dist(x, z) : x ∈ P} ≤ dist(x, y) ≤ C ·min {dist(x, z) : z ∈ P} (1.17)

I.e. we do not need to find the exact nearest neighbour and are satisfied with a neighbour
that is good enough (within an approximation factor C) of the nearest neighbour.
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Indyk and Motwani propose a clever hashing scheme for a randomized data structure to
solve this problem in O(dnp) time where p ≈ 1

C and ApxNearestNeighbour(P, x) will out-
put a C-near neighbour with probability at least 2

3 via a new function, NearNeighbour(P, x)

Definition 5 NearNeighbourr(P, x)

• If ∃ z ∈ P such that dist(x, z) ≤ r, then NearNeighbourr(P, x) will output some
y ∈ P for which dist(x, y) ≤ Cr

• If every string z in P satisfies dist(x, z) ≥ Cr, then NearNighbourr(P, x) outputs
FAIL.

Next, let’s go from NearNeighbour to a harder problem: NearestNeighbour(P, q) via
ApxNearestNeighbour(P, q)

• Assume that for each r we can implement a data structure for an easier prob-
lem (e.g. NearNeighbour(P, q)) for which Insert,NearNeighbour run in T (n),
how can we implement Insert and ApxNearestNeighbour in O(T (n) log d) so that
ApxNearestNeighbour achieves approximation factor 2C and success probability 2

3

How can we build this data structure then? Still focusing on hamming dis-
tance for now

• Looking at euclidean distance, what if we divide Rd into grid cells and then
NearNighbour(P, q) checks the cells around q. This won’t work because the amount
of cells we have to check is an exponential in the order of d.9 9This is particularly an issue with ham-

ming distance since here we commonly
work with very high dimensions. Not
as bad for euclidean distance since usu.
work with 2-3 dimensions there.

• We can cut down on the number of cells we have to check by forming the cells randomly.
This way, though we introduce the possibility of making a mistake, we also greatly re-
duce the number of cells to check.

Instead of a fixed grid we randomly divide the string {0, 1}d into buckets such that

• dist(x, y) ≤ r ⇒ (x, y) fall into the same bucket with probability ≥ p1

• dist(x, y) ≥ Cr ⇒ (x, y) fall into the same bucket with probability ≥ p2

and p1 > p2.
Taking a step back the idea is that we can create buckets and hash into the bucket in such

a way that it is more likely for near neighbours of x to fall in the same bucket of x and likewise
for strings far from x. After the strings have been separated off into buckets the specific near
neighbours can be found through normal hashing10 10or whatever you choose at this point,

I think
. NearNeighbour(P, q) checks the bucket

containing q and repeats the whole thing several times.
Now, how can we do this for hamming distance?

Definition 6 For any i ∈ [d] , gi : {0, 1}d → {0, 1} is defined by gi = xi. Suppose i is picked from [d]
uniformly at random.11 11Instead of thinking hash functions we

can also think of this as the buckets
we are putting values in (or are getting
hashed to)

Then the probability of a hash function collision is:

Pi(gi(x) = gi(y)) = {i : xi = yi}
d

= 1− {i : xi ̸= yi}
d

= 1− dist(x, y)
d

(1.18)

Where dist is the hamming distance between x, y

Then, the probability that they are mapped to the same value, i.e. that near points collide
is:

dist(x, y) ≤ r : P (gi(x) = gi(y)) ≥ (1− r

d
)k = pk

1 (1.19)
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And that they don’t collide:

dist(x, y) ≥ Cr : P (gi(x) = gi(y)) ≤ (1− Cr

d
)k = pk

2 (1.20)

This is a locality-sensitive hashing family for hamming distance. In this case it is quite
similar for the hamming distance case, but it can bemore difficult for different distances. Unlike
other hashing functions the probability of collision is not constant, but depends on the distance
between the points.

We may amplify the probability gap by hashing multiple times. This is a very generic
technique that applies to other distance metrics and hashing methods as well.

Definition 7 For I = (i1 . . . ik) a sequence of indicies from [d] , gj is defined by gI = (xi1 , . . . xik
).

For I = (i1 . . . ik) picked uniformly and independently from [d],

P(gI(x) = gI(y)) = P (xi1 = yi1 , . . . xik
= yik

)
= P (xi1 = yi1) . . . P (xik

= yik
)

= 1−
(

dist(x, y)
d

)k
(1.21)

So,

dist(x, y) ≤ r : P (gI(x) = gI(y)) ≥ 1−
( r

d

)k

= pk
1 (1.22)

dist(x, y) ≥ Cr : P (gI(x) = gI(y)) ≤ 1−
(

Cr

d

)k

= pk
2 (1.23)

So this gives us the power to pick k arbitrarily in order to amplify the gap between p1 and
p2

• k is a parameter that we will choose.

Example x = (1, 0, 0, 0, 1, 1, 1, 0), I = (3, 1, 7)

gI(x) = (0, 1, 0) (1.24)

1.5.2 Two-level hashing

Data structure:
Note: universal hash func-
tions are hash functions such
that each hi is a random hash
function that such that

∀u, v = {0, 1}k
, u ̸= v

(1.25)
The probability of collision for
an universal hash function is
small, or formally,

P (hi(u) = hi(v)) ≤ 1
m
≤ 1

n
(1.26)

TLDR: has a reasonably low
probability of collision and is
reasonably fast to compute

• L hash tables T1 . . . TL with m ≥ n slots each

• L regular hash functions h1 . . . hL : {0, 1}k → [m] from an universal family

• L locality sensitive hash functions gI1 . . . gIl
: {0, 1}d {0, 1}k

Structure and inserting
Store each x ∈ P in Tl[hl(gIl

(x))], l = 1 . . . L.

• g is the locality sensitive hash function and h is the regular hash function.

• g is used to map the point into buckets which are ‘close together’ and then h is used to
resolve locally clustered points. Collisions can be handled via linear chaining.

• runtime on the order of O(lp) for insertion
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nearneighbour(P, q)
1 num-checked = 0
2 for l = 1 to L
3 i = hl(gl(q))
4 set x to the head of Tl[i]
5 while x ̸= ∅
6 if dist(q.x) <= Cr
7 return x
8 num-checked = num-checked + 1
9 if num-checked = 12L + 1 // timeout
10 return FAIL
11 else
12 Set x to the next element in Tl[i]
13 return FAIL

In words: for each hash table Tl search through T (hl(gl(x))) linked list. If we find a
near neighbour, we’re good. Otherwise, keep on trying until we timeout (Line 9) (just some
somewhat arbitrary constant) or fail otherwise.

Definition 8 Union Bound
For any two events A, B in a probability space ,

P (A or B) ≤ P (A) + P (B) (1.27)

And by simple induction this extends to k events

Analysis
Or goal here is to show that the probability of ‘bad collisions’ or failure is small.

Theorem 3 Let k = log 1
p2

(n). Let ρ =
log 1

p1
log 1

p2
and L = 2nρ. If there exists a point x∗ in P such that

dist(x, x∗) ≤ r, then with probability of at least 2
3 the procedure nearneighbour(P, x)

will output some y ∈ P for which dist(x, y) ≤ Cr

We assume that there exists x∗ ∈ P such that dist(q, x∗) ≤ r, i.e. there is some point x∗

in the dataset that is somewhat close to q. Therefore there exists a circle of radius Cr centered
about q containing all of the points that could satisfy nearneighbour

Conversely we can produce the set F of far-away points as follows

F = {x ∈ P : dist(q, x) > Cr} (1.28)

NearNeighbour(P, x) succeeds if it outputs some y ∈ P such that dist(x, y) ≤ Cr. For
this to happen we must have:

1. q collides with points in F at most 12L times (with multiplicity)

2. q collides with x∗

It’s really difficult to do this
proof with a statement like
‘probability of hitting 12L+1
consecutive items in F ’ since
that implies an ordering.

What is the probability of both happening?

1. Expected number of collisions with far points

Comment Recall that p2 = 1− Cr
d is the probability that near points do not collide.
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∀ l,∀x ∈ F : P [gIl
(x) = gIl

(q)] ≤ pk
2 = (1− Cr

d
)k (1.29)

I.e. the probability of a col-
lision with a far away point
is bounded by the probability
that near points do not collide

Let us choose k such that

pk
2 = (1− Cr

d
)k ≤ 1

n
⇒ k ≡ log n

log 1
p2

(1.30)

Let’s define a random indicator variable zx,l which takes on 1 if y collides with x in Tl

and 0 otherwise. The number of collisions with far points is then the expectation of this
random variable.

zx,l =
{

1 if x collides with q in T_l
0 otherwise

(1.31)

E[X] =
L∑

l=1

∑
x∈F

zx,l ≤
2|F |L

n
≤ 2L (1.32)

12 12 Since we defined F to be the
set of far collisions and |F | is
just the number of items in F .Definition 9 Markov’s Inequality

Let X ≥ 0 be a random variable. Then for any x > 0,

P (X > x) <
E[X]

x
(1.33)

Proof By the law of total expectation we can break up the expectation into two parts

E[X] = E[X|X ≤ x] · P (X ≤ x) + E[X|X > x]P (X > x) (1.34)

The first term is non-negative and the 2nd term is strictly larger than xP (X > x).
So

E[X] > xP (X > x) (1.35)

Note that a similar result holds for

P (X ≥ x) ≤ E[X]
x

(1.36)

We will also need to know how an element y can collide with q in Tl. A string y will
collide with q if hl(gIL

(y)) = hl(gIL
(x)) for some l. This implies that that collisions

happen if

(a) g produces the same output for y and q for some l, i.e the first hash function collides
(b) hl produces the same output for different inputs13 13Those being the result of the first hash

function
, i.e. h collides

Since we picked each hash table to have m ≥ n slots and that hl is chosen from a family
of universal hash functions, we have the probability of h colliding being bound by 1

n . For
g we picked k carefully a little bit prior such that the probability of collision is bounded
by pk

2 ≤ 1
n

Therefore we have
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P [zx,l = 1] = P [gIl
(x) = gIl

(q)] + P [gIl
(x) ̸= gIl

(q), hl(gIl
(x))

= hl(gIl
(q))] ≤ 1

n
+ 1

n
≤ 2

n

(1.37)

14 14 Note that the probability of
collision is at most 1

n for an
universal hashing function

Thenwe can applyMarkov’s inequality to get that the probability of the random variable
Z representing the number of collisions as

P [Z ≥ 12L] ≤ 2L

12L
= 1

6 (1.38)

So this property holds with probability of at least 5
6

This implies that a relation-
ship betweenMonte Carlo and
Las Vegas algorithms; we can
take a Las Vegas algorithm and
turn it into a Monte Carlo al-
gorithm by timing it out.

2. Now we have to show the probability of q collides with x∗ or something good

For the proof we’ll take x∗ since we assumed it to be good earlier on.
This probability is lower-bounded by the probability that there exists a l such that gl

produces the same output for x∗ and q. However we want to bring on a upper bound to
this probability.

P (∃ l : gIl
(q) = gIl

(x∗)) = 1−
L∏

l=1
P [gIl

(x∗) = gIl
(q)]

≥ 1− (1− pk
1)L ≥ 1− e−Lpk

1

(1.39)

Comment Recall: p1 = 1− r
d is the probability of a collision with a near point i.e. dist(x, y) ≤ r

Also, it’s a fact that 1− x ≤ e−x

Then we can simplify this a little bit by assuming k = log 1
p1

n

pk
1 = 2−k log2( 1

p1
) = . . . n−ρ (1.40)

So then we have Lpk
1 = 2 and x∗ collides with x with probability at least 1− 1

e2 .

By the union bound bound the probability of both properties holding is at least

1− (1
6 + 1

e2 ) >
2
3 (1.41)

which concludes the proof.
This also implies that INSERT,nearneighbour run in O((k + d)nρ) (Recall: k is the

input string size, d is the number of buckets, and L ≈ nρ). Approximating 1 − x ≈ e−x we
get ρ =

log 1
p1

log 1
p2
≈ 1

C and k = O(d log(n)). So overall they run in approximately O(dn
1
C log n)

time which is much faster than Θ(dn) linear search for C > 1
Now we may be interested in extending what we have done for Hamming distance for

other distance metrics, i.e. having a hash function that is more likely to put nearby points in
the same bucket than far away points.

Definition 10 A random hash function h with domain X is locality sensitive with parameter p for distance
metric d if
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dist(x, y) ≤ r ⇒ P (h(x) = h(y)) ≥ p1 (1.42)

dist(x, y) ≥ Cr ⇒ P (h(x) = h(y)) ≤ p2 (1.43)

Subsection 1.6

Streaming Algorithms

Streaming algorithms are a class of algorithms that are extremely efficient in terms of space
and usually in terms of time complexity. They are used in many applications where we want
to process enormous amounts of data in a short amount of time. Generally they are algorithms
that work in time steps and receive one update per time step.

Here are some definitions and conventions for the following section

• The sequence of updates is called the stream

• n: the size of the universe the stream is coming from

• m: the length of the stream (may/may not be given to algorithm)

• Algorithm is only allowed to store a number of bits which is bounded by a polynomial
in log n and log m, i.e. O(logc(nm)) bits.

Many fundamental streaming problems are summarized by the frequency vector f which
describes the number of times each element in the universe appears in the stream.15 15The algorithm cannot actually store

f since it’s size is O(n) which violates
the memory bound described earlier

Some other versions of the streamingmodel may introduce a richer meaning to update, i..e
the turnstilemodel where an update is a pair (i, s) where i identifies the update and s identifies
the type of update it is16 16For example entering or exiting a

subway station
Example Give an algorithm that finds the missing number in a stream of n − 1 numbers

containing n− 1 of the integers 1 . . . n
This can be solved by taking the running sum of the stream and subtracting it from the sum
of numbers from 1 . . . n. A likewise approach may be adopted to 2 missing numbers by
introducing the sum of squares.

1.6.1 Frequent Elements
As a warm-up let’s consider the majority problem

• input: a stream σ = (i1 . . . im) of updates in [n] = 1....n. If there exists i ∈ [n] such
that more than half of the updates in σ are equal to i, the algorithm should output i.
Otherwise, it may output any element

The following algorithm proposed by Boyer and Moore solves the problem with only two
words of memory

MAJORITY(σ)
1 element = i1
2 count = 1
3 for t = 2 to m
4 if element == it

5 count = count + 1
6 elseif count > 0
7 count = count− 1
8 else
9 element = it

10 count = 1
11 return element
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Proof A naive implementation of a solution could involve storing f , i.e pairs of each unique ele-
ment and it’s associated frequency. However this uses a lot more space than what we desire.
We note that for this problemwe don’t care about the actual frequency of each element, only
the element with the highest frequency, so the problem solutionmay be relaxed to only store
the element [with the highest frequency]. Likewise, we don’t care about the frequency of
the element either – only that it is the highest frequency element. The above algorithm
maintains the invariant that felement ≤ count + m

2 .
Therefore by the time the algorithm finishes executing element will contain the most fre-
quent element (if there exists one) or some arbitrary element otherwise. Intuitively we may
think of the procedure "allocating" space for one non-current-majority element on lines 4-5,
which can then be taken away if we later inspect a non-current-majority element (lines 6-7).
Then it can be concluded that if an element ‘survives’ until the end of the algorithm it must
either 1. be the majority element, if one exists, or 2. any arbitrary element, if none exists.

Comment Note that Since this algorithm does not tell you if a strict majority exists or not, to verify
it’s results you will have to run over the data set again to determine if the resulting value
is the majority value or just any element.

An extension of Majority is given by Misra and Gries to find all elements that appear in
more than 1

k of the updates

freqent(σ, k)
1 S = ∅
2 for t = 1→ m
3 if ∃ x ∈ S such that x.elem == it

4 x.count + +
5 elseif |S| < k − 1
6 Create x with x.elem = it and x.count = 1
7 S = S ∪ x
8 else
9 for x ∈ S
10 x.count−−
11 if x.count == 0
12 S = S \ {x}
13 return S

Theorem 4 The set S output by Freqent contains all i ∈ [n] such that fi > m
k . Moreover for any

x ∈ S, fx.elem ≤ x.count + m
k

Proof This algorithm is an extension of the Majority algorithm described prior; whereas
majority maintained a single element-count pair, freqent maintains k element-count
pairs in S and updates them accordingly with the same count-tracking17 17sort of like amortized analysis in a

way; encountering an it that exists S
gives you a dollar to save, and encoun-
tering an it that doesn’t exist in S
causes you to spend a dollar

. One key differ-
ence is on line 11, where if it is not in S then we decrement the counts for every element in
S. If an entry in S has a count of 0 then we boot it out to make space for a new one.

Another streaming problem that is of interest is the distinct elements count problem, i.e.
given an input streamwewant to know howmany distinct integers we have seen in the stream
so far. In other words, we want to approximate the frequency vector but only track elements
with frequency greater than 0.

To relax our initial analysis let’s consider a relaxed problem where, provided that there is
some oracle which can tell us a number F̃0 such that
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F0 ≤ F̃0 ≤ 2F0 (1.44)

Our algorithm will then refine this loose estimate to a more precise one through informa-
tion captured in the stream.

Distinct-simple(σ, k, F̃0)
1 S = ∅
2 d =

⌈
log2(F̃0/k)

⌉
3 K = ⌈log2 n⌉
4 Pick a hash function h : [n]→ {0, 1}L

5 for t = 1→ m

6 if h(it) ∈ od {0, 1}L−d and it /∈ S
7 S = S ∪ {it}
8 return F̂0 = 2d · |S|

1. Recall σ = i1 . . . it is the input
stream

k is some constant that we get to pick

2. Take h to behave like a random function; basically simple uniform hashing assumption

Figure 6. Treat notation here like a regexp; i.e. d 0-s followed by L − d 1s or 0s

3.

This algorithm attempts to maintain set S such that it contains each element that appears
with probability 2−d and therefore E[|S|] is 2−d of the elements that appear in the stream18 18So F̂0 = 2d|S|k
is a constant that we get to pick – the larger it is, the more space our algorithm uses (but the
more accurate it becomes).

Definition 11 Recall: Variance: a measure of howmuch a random variableX deviates from its expectation
on average, i.e. the expectation of the difference between X and it’s expectation.

V ar(X) = E[(X − E[X])2]
= E[X2]− E[X]2

(1.45)

An useful property of variance is the sum of independent random variables is equal to the
sum of their variances

V ar(
N∑

i=1
Xi) =

N∑
i=1

V ar(Xi) (1.46)

Another tool that will be useful for this analysis is Chebyshev’s Inequality

Definition 12 Chebyshev’s Inequality

P (|X − E[X]| > t) <
V ar(X)

t2 (1.47)
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Proof A proof of this inequality follows from Markov’s inequality discussed in the previous
lecture on locality sensitive hashing.
Define Z = (X − E[X])2. Since this implies Z ≥ 0 and V ar(X) = E[Z] by definition,

|X − E[X]| > t⇔ X > t2 (1.48)

So we can just apply Markov’s inequality to the above statement to give

P (|X − E[X]| > t) = P (Z > t2) <
V ar(X)

t2 (1.49)

A nice property of Chebyshev’s inequality is that it doesn’t assume the random variable
is non-negative and bounds the probability in both directions as well.

Theorem 5 If F̃0 satisfies our prior assertion that F0 ≤ F̃0 ≤ 2F0, then F̂0 output by
distinct-simple(σ, F̃0, k) satisfies

(1−
√

8√
k

) ≤ F̂0 ≤ (1 +
√

8√
k

) (1.50)

With probability > 1
2 and uses O(k) memory.
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Proof Define D to be the set of i ∈ [n] that appear in the stream. By definition, F0 = |D|.
Define Xi as an indicator random variable, i.e.

Xi =
{

1 if i ∈ D

0 otherwise
(1.51)

Then,

E[Xi] = P (i ∈ S) = 2−d (1.52)

Since h(i) is uniformly random in {0, 1}L and by construction 2L−d of 2L strings have d
leftmost bits set to 0.
Then,

E[|S|] = E[
∑
i∈D

Xi] =
∑
i∈D

P (i ∈ S) = 2−dF0 (1.53)

Since we chose d such that 2−dF̃0 ≤ k, we have

E[|S|] ≤ 2−dF0 ≤ 2−dF̃0 ≤ k (1.54)

It follows that the algorithm
takes O(k) memory in expec-
tation since S dominates the
memory use

However this is not enough to show that F̂0 is close to F0 even though it is easy to see
that they are equal in expectation. To show this we can apply Chebyshev’s inequality, i.e.
if the variance of F̂0 is small it is likely to be close to its expectation.
We know that

V ar(|S|) =
∑
i∈D

V ar(Xi) (1.55)

and that

V ar(Xi) = E[X2
i ]− E[Xi]2 ≤ E[X2

i ] = 2−d (1.56)

So we get V ar(|S|) ≤ 2−dF0 = E[|S|]
So, if we let ε =

√
8√
k
, then by Chebyshev we get

P (F̂0 − F0) ≥ εF0) = P (|F̂0 − E[F̂0|] ≥ εE[F̂0])
= P (|S| − E[|S|] ≥ εE[|S|])

≤ V ar(|S|)
ε2E[|S|2] ≤

1
ε2E[|S|]

(1.57)

So if the expected size of S is not too small we have a large probability of getting an
accurate estimate.
Rearranging, our prior choice that 2d ≤ 2F̃0/k, we get

E[|S|] = 2−dF0 ≥ 2−d−1F̃0 ≥
k

4 (1.58)

Plugging this bound for E[|S|] into the expression obtained by Chebyshev’s inequality
we get

P (|F̂0 − F0| ≥ εF0) ≤ 4
ε2k

= 1
2 (1.59)
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1.6.2 Adaptive Sampling

A single-pass streaming algorithm for distinct counts which does not assume an estimate F̃0.

Distinct(σ, k)
1 S = ∅, d = 0, L = ⌈log2 n⌉
2 Pick a hash function h : [n]→ {0, 1}L

3 for t = 1→ m

4 if h(it) ∈ 0d {0, 1}L−d and it /∈ S
5 S = s ∪ {i_t}
6 while |S| > k
7 d = d + 1
8 T = ∅
9 for j ∈ S

10 if h(j) ∈ 0d {0, 1}L−d

11 T = T ∪ {j}
12 S = T

13 return F̂0 = 2d · |S|

Comment The idea behind this algorithm is to apply the concepts in Distinct-Simple to set d and the
sample rate adaptively while keeping the invariant of |S| ≤ k.

Theorem 6 Let 0 ≤ ε ≤ 1
3 and k ≥ 16

ε2 .19 19In the lecture note we use k ≥ 144
to get a bound with ε = 4√

k

Then, with probability at least 1
2 the estimate F̂0 output by

Distinct(σ, k) satisfies

(1− ε)F0 ≤ F̂0 ≤ (1 + ε) · F0 (1.60)

Proof Let D = {i : fi > 0} be the distinct elements that appear in σ, and Sl ={
i ∈ D : h(i) ∈ 0l {0, 1}L−l

}
be the elements in σ whose hash value starts with l zeros.

By this definition |D| = F0.

E[|Sl|] = 2−l|D| = 2−lF0 (1.61)

V ar[|Sl|] = 2−l(1− s−l) ≤ E[|Sl|] = 2−lF0 (1.62)

At the end of σ, d = min {l : |sl| ≤ k}. 20 20All of these variables here are ran-
dom.

Can think of the algorithm as keeping s0 at first,
and then if there’s too much in s0 it will move on to s1 and so forth. The output of the
algorithm, F̂0 is given by 2d|Sd|. So this algorithm searches for the first l such that |Sl| ≤ k.
Note that the expected sizes of Sl halve with each increment in l.
For correctness we need

a == ⌊log2((1− ε)F0/k)⌋ b == ⌈log2((1 + ε)F0/k)⌉ (1.63)

Chosen such that a ≤ d ≤ B

(1− ε)F0

2k
≤ 2a ≤ (1− ε)F0

k
(1.64)

This implies that

(1 + εE[|Sa|]) = (1 + ε)2−aF0 ≥ k (1.65)



CSC473: Advanced Algorithms Linear Programming 21

(1 + ε)F0

k
≤ 2b ≤ 2(1 + ε)F0

k
(1.66)

This implies that

(1 + ε)E|Sb| ≤ k (1.67)

We will now show that the following probabilities ≥ 5
6 which is ≥ 1

2 , which implies that
the probability of all 3 is at least 1

2 .

(1− ε)F0 < 2a|Sa| ≤ (1 + ε)F0 ≥
5
6 (1.68)

For this one:

⇒ |Sa| > (1− ε)2−a F0 ≥ k

|Sa| > k ⇒ a < d
(1.69)

|Sb| ≤ k ⇒ d ≤ b (1.70)

(1− ε)F0 < 2b+1|Sb−1| ≤ (1 + ε)F0 ≥
5
6 (1.71)

(1− ε)F0 < 2b|Sb| ≤ (1 + ε)F0 ≥
5
6 (1.72)

Note: if ε small enough and after some calculations we can show that

B ≤ a + 2 (1.73)

(1− ε)|Sa| = (1− ε)2−aF0 ≥ k (1.74)

Subsection 1.7

Linear Programming

A linear programming is an optimization problem defined by linear inequalities and equalities.
The following form will be used in this class:

Definition 13 Linear program:

max cT x s.t. Ax ≤ b x ≥ 0 (1.75)

Where A is a m × n matrix (m constraints, n variables), b is a m × 1 column vector. c is a
n×1 column vector, and x is a n×1 objective column vector. The inequalities are such that
the inequality should hold for all elements of the above matrix expression at the same time.
The set of x that satisfy the constraints is called the feasible set, and the LP is infeasible if
the feasible set is empty.

For example,
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minx1 + x2 + x3s.t.

x1 + x2 = 1
x2 + x3 ≥ 1
x1 + x3 ≥ 1

x1, x2, x3 ≥ 0

(1.76)

Which corresponds to the following matricies

A =

1 1 0
0 1 1
1 0 1

 b =

1
1
1

 c =

1
1
1

 (1.77)

Geometrically we may understand LPs as some sort of n-dimensional polyhedron
comprised of the intersection of the halfspaces defined by the hyperplanes each inequal-
ity represents. In more simple terms: each inequality defines a supporting hyperplane{

x ∈ Rn : aT x = b
}
One halfside,

{
x ∈ Rn : aT x ≤ b

}
of the hyperplane gives admissible

solutions to the inequality. The polyhedron that contains all of the solutions to the inequality
is then given by the intersection of all the hyperplanes in the set. A polyhedron P is un-
bounded when there exists a point x such that x ∈ P and a direction v for which for every
t ≥ 0, x + tv ∈ P . A bounded polyhedron, i.e. not unbounded is a polytope.

Definition 14 Formally a face of a polyhedron is a set of the type

F = {x : Ax ≤ b} ∩ {x : aix = bi∀ i ∈ S} (1.78)

Where ai is the ith row of A and S is some subset of the rows of A.
A j-face is a face where the rank of the sub-matrix Af of A for that face is n− j.
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Figure 7. In this example the triangle {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a facet (2-face); F = P ∪
{x1 + x2 + x3 = 1}. The edge F1 or F2 is a 1-face, and the vertex v is a 0-face

Definition 15 A Vertex of a polytope P = {x ∈ Rn : Ax < b} is a point in P we can get by setting n
linearly independent constraints to equality

x1 + x2 ≥ 10 =⇒ x1 + x2 = 10
x2 + x3 ≤ 15 =⇒ x2 + x3 = 15

(1.79)

Theorem 7 For any polytope P with verticies v1 . . . vN , any x ∈ P can be witten as x = λ1v1 + . . . +
λN vN , where

N∑
i=1

λi = 1 (1.80)

And

λi ≥ 0 (1.81)

Recall that some vertex v ∈ P is an optimal solution to the LP, i.e. cT x is minimized or
maximized.

Definition 16 Convexity: A set S ∈ Rn is convex if for any two points x, y in S the line segment between
x and y is contained in S.

Definition 17 Convex Hull: v1, . . . , vn ∈ Rn is the smallest convex set of S ∈ Rn containing v1 . . . , vN .
This can be imagined as a shrink-wrap of the points.
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Algebraically this can be written as

conv-hull({v1 . . . , vN}) = {λ1v1 + . . . , hN vN : λ1 . . . , λN ≥ 0, λ1 + . . . , +λN = 1}
(1.82)

Many proofs involving convex hulls may be partially resolved with the fact that the convex
hull of two points is the line between them, and a little bit of induction.

1.7.1 LP Examples

Comment In order to use linear programming we must need to know how to frame questions as LP
questions.

Example Menu planning
Given the following list of prices & nutritional values for a set of foods, find the minimum
additional price for dish to meet nutritional requirements?

The minimization is simply the price multiplied by the amount. The constraints can be
described as follows:

• There should be non-zero carrots, white cabbage, and pickles
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• The sum of vitamin A across the dish should be at least 0.5mg

• And so forth...

Example Network flow

What is the maximum transfer rate from the old computer o to the new computer n?
Let’s introduce a variable xab which specifies the rate at which data is transferred from a to
b for each link in the network. In this graph we have 10 such variables.
The linear program is then as follows

Our goal is to maximize the flow out of computer o under the assumption that, since the
data is neither stored or lost, it must be received by n at the same rate. The next constraints
restrict the transfer rates along each of the individual links, i.e. xcd can transmit at a rate
of up to 4 forwards or backwards (−4 ≤ xcd≤4). The relations between the nodes are then
captured in the last few equality constraints and effectively say that whatever leaves each
node must leave it immediately 21 21xoa = xab +xad; flow from o → a

must leave through a to either b, d
.

Consider the following problem: given a projected mostly ice cream sales for the next year,
how can produce a production schedule with the minimum cost?
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Example

A simple solution might be JIT22 22just-in-time (heh)production – but this can be expensive due to temp
workers and machine adjustments, etc. It may be better to spread out production and to build
up stock.

Let’s formalize this problem as follows:

• Demand in month i is di

• xi is the production in month i

• si is the total surplus in store at end of month i

• To meet demand in month i we may use the production in month i and the surplus from
i− 1; xi + si−1 ≥ di

• And the surplus after month i is xi + si−1 − si = di

• Assume initial surplus is s0 = 0, and we want s12 = 0

Let’s take the cost of changing production by 1 ton between two months to be 50 and the
storage cost for 1 ton of ice cream is 20

Total cost:

50
12∑

i=1
|xi − xi−1|+ 20

12∑
i=1

si (1.83)

This cost function is unfortunately not linear, but we can use the following trick to make
it linear: since the change in production is either an increase or decrease, we may introduce
yi ≥ 0 for the increase and zi ≥ 0 for the decrease to get

xi − xi−1 = yi − yz and |xi − xi−1| = yi + zi (1.84)



CSC473: Advanced Algorithms Linear Programming 27

Figure 8. The linear program that follows

1.7.2 Duality

How can I convince you that the solution to a linear program is optimal?

maxx1

given
x1 + x2 + x3 ≤ 1

x1 · x2 · x3 ≥ 0

(1.85)

We know that the optimal value of this LP is x1 = 1, x2 = 0, x3 = 0.
Or, to solve the example given at the beginning of this section (equation 1.77), we have

the solution Note symmetry in solution!x1 = x2 = x3 = 1
2 =⇒ value ≤ 3

2 .
If we were to multiply each inequality by half and add them up, we get

x1 + x2 + x3 ≥
3
2 (1.86)

So here we were able to put a lower bound on the optimal value of the LP, but we don’t
know abut the upper bound. We can do this by using duality. Before we do that, here’s the
above logic formalized:

Given the LP in general form

max cT x s.t. Ax ≤ b x ≥ 0 (1.87)

We may apply the technique of dropping values and multiplying the inequalities used
above.

Let’s define y ≥ 0 as the dual variables which are applied onto the inequality as follows:

y(Ax ≤ b) (1.88)

Comment Only multiply by non-negative constants to avoid messing up the inequalities

Then,

yAx ≤ yb (1.89)

If every row of yA is greater than equal to ci, then the objective value is upper-bounded
by yb!

And as it turns out this is just yet another linear program for minimization over choices
of y that we can solve with our existing LP techniques. if max cT x where Ax ≤

b, x ≥ 0 is the original LP,
we call it the primal LP, and
minbT y where AT y ≥ c, y ≥
0 is the dual LP. Refer to
handout for more primal-dual
pairs.
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Theorem 8 Weak duality: Let x satisfy the primal LP, and let y satisfy the dual constraints. Then, cT x ≤
bT y.

The proof follows from observing that the primal LP is a maximization problem and the
dual is a minimization problem. Then a solution to the maximization problem is lesser than
it’s dual minimization problem. More formally,

Proof Observe that
u, w, v ∈ Rn, u ≥ v, w ≥ 0 then uT w ≥ vT w (1.90)

Then, since we have c ≤ AT y and x ≥ 0, we have cT x ≤ yT Ax Think of the connection be-
tween the dual linear pro-
grams; b and c appear in both
the primal and dual problems

. Likewise, we have
yT Ax ≤ yT b. So,

cT x ≤ yT Ax ≤ yT b =⇒ cT x ≤ bT y (1.91)

Theorem 9 If both primal and dual LPs are feasible, then their optimal values are equal.

The proof of this theorem lies on Farkas’ Lemma.

Lemma 3 Farkas’s Lemma: For any m × n matrix A and any m × 1 vector b, exactly one of the
following two statements is true

1. There exists a x ∈ Rn, x ≥ 0 such that Ax = b

2. There exists a y ∈ Rm such that AT y ≤ 0 and bT y > 0

Comment We can think of Farkas’s Lemma as a conclusion made about the geometry of the problem.
We define a hypercone C with the first constraint, C = {Ax : x ≥ 0}. If the first statement
does not hold, then we have b /∈ C . Now what we aim to show is that, if b /∈ C , then there
exists a hyperplane H through the origin that splits the space such that the hypercone lies
entirely on one side of H and b is on the other side.
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Using Farkas’s Lemma, we can prove the theorem. Since we assume that the primal and
dual are feasible, then their values vp, vd are finite and achieved. Since the optimal value of the
dual LP is vd, there does not exist any y ∈ Rm such that y ≥ 0, Aty ≥ c, and ytb < vd. This
implies that the intersection of the hyperplane and P is non-empty and vp ≥ vd. However, by
weak duality vp ≤ d. Therefore, vp = vd.

Also, if we take the dual of a
LP twicewe get the original LP
backTheorem 10 Complementary Slackness

Let x be a feasible solution to the primal LP, and let y be a feasible solution to the dual LP.
Then x, y are optimal if and only if:

∀ i ∈ {1 . . . , m} : (bi − (Ax)i)yi = 0 (1.92)

∀ j ∈ {1 . . . , n} : ((AT y)j − cj)xj = 0 (1.93)
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Proof x and y are optimal ⇐⇒ cT x = bT y = v, so

yT Ax ≤ yT b = v = cT x ≥ yT Ax⇒ yT Ax = cT x = yT b (1.94)

In other words, a primal feasible solution x and dual feasible solution y are optimal if and
only if whenever a dual variable yi is positive, the corresponding primal constraint is tight
((Ax)i = bi). Similarly, whenever a primal constraint is slack ((Ax)i < bi), then the corre-
sponding dual variable is 0. The same applies in the opposite direction; whenever a primal
variable xj is positive, the corresponding dual constraint is tight ((Aty)j = cj ), and if the
dual constraint is slack ((Aty > cj)) then the dual variable is 0. In more concise terms at
most one of the constraints in each pair is slack.

Subsection 1.8

Bipartite Matching

A bipartite graph is a graph whose vertices can be partitioned into two disjoint sets A, B such
that every edge connects a vertex in A to a vertex in B. A matching M is a subset of edges
such that each vertex of V is incident to at most one edge of M . An exposed vertex v has no
edge of M incident to it. A perfect matching has no exposed vertex

1.8.1 Maximum Cardinality Matching

The goal of the Maximum Cardinality Matching problem is to find a matching of maximum
size. There exists a duality between the size of the upper bound of the maximum cardinality
matching and the lower minimum size of a vertex cover. By definition, a vertex cover C is a set
such that all edges are incident to at least one vertex in C . Weak duality (the maximum size of
a matching is at most the minimum size of a vertex cover) follows because for any matching
M , C must contain at least one of the endpoints of each edge in M .

Theorem 11 Strong duality between the maximum size of a matching and the minimum size of a vertex
cover holds for bipartite graphs.

Definition 18 Alternating path: An alternating path in M is one that alternates between edges in M and
E −M

Definition 19 Augmenting Path: An augmenting pathwith respect toM is an alternating path that starts
and ends at exposed vertices.

Note that an augmenting path w.r.t. M contains k edges of M and k + 1 edges not in M.
And the endpoints must be on different sides of the bipartition, so if we get

M ′ = M∆P ≡ (M − P ) ∪ (P −M) (1.95)

where P is the augmenting path we get a new matching M ′ that is one edge larger than
M , i.e. |M ′| = k + 1.

Theorem 12 A matching M is maximum if and only if there is no augmenting path w.r.t. M . The proof
is simple via a proof by contradiction from the definition of an augmenting path.

An algorithm for finding a maximum matching is to start with an empty matching and
repeatedly find an augmenting path and add it to the matching. We know that it will terminate
by the theorem above, and specifically, it will terminate after O(µ) augmentations, where µ
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is the size of the maximum matching. We know µ ≤ n
2 given a bi-

partite graph
This sounds great, but how can we find an augmenting

path? Construct directed graph D where D has a vertex for each exposed vertex in M and
an edge from A → B if it does not belong to M and B → A otherwise. There exists an
augmenting path in G with respect to M ⇐⇒ there exists a directed path in D between
exposed vertices in A and B. DFS can be used on this graph to give an O(m) algorithm to
finding an augmenting path in G, leading to an O(nm) algorithm for maximum cardinality
matching which can be cut down to O(m

√
n) by augmenting among several paths at the same

time.
When the algorithm terminates,C∗ = (A−L)∪(B∩L) is a vertex cover, and |C∗| = |M∗|

Proof A proof by contradiction can be used to show that it is a vertex cover.
Suppose C∗ is not a vertex cover. Then ∃ e = (a, b) with a ∈ A ∩ L and b ∈ B − L, i.e.
cannot belong to the matching. This means that e is in E−M and was directed (in D) from
A→ B. This implies that b can be reached from an exposed vertex in A via a directed path
in D through e23 23Since it is the only such edgewhich contradicts that b ∈ B − L.
The second part of the proof, that every vertex in C covers exactly one edge in M follows
from

• No vertex inA−L andB∩L is exposed, by definition or by the fact that the algorithm
terminates.

• There is no edge of the matching between A−L and B ∩L, otherwise a would be in
L

This implies that every vertex in C∗ is matched and the corresponding edges are distinct –
so |C ∗ | ≤ |M ∗ |. The opposite direction holds by weak duality, so |C ∗ | = |M ∗ |.

1.8.2 MinimumWeight Perfect Matching

Comment There are n jobs and n workers. Each job i requires a worker j to complete it. Each worker
j has a cost cj to work on a job. Find a task assignment of minimum cost.

• Assume G has a perfect matching M , |M | = n
2 . Also assume that it is a complete

bipartite graph, i.e. ∃ e = (a, b)∀ a ∈ A, b ∈ B

The minimum weight perfect matching problem may be formulated as follows:

min
∑
i,j

cijxij subject to∑
j

xij = 1 i ∈ A

∑
i

xij = 1 j ∈ B

xij ≥ 0 i ∈ A, j ∈ B

xij is an integer

(1.96)

Convince yourself that any so-
lution to this problem corre-
sponds to a matching

This is an integer problem, which is a special case of the linear program problem where the
solutions must be integers. A relaxed problem, the linear program P is defined similarly to the
integer program, but without the constraint that xij is an integer
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min
∑
i,j

cijxij subject to∑
j

xij = 1 i ∈ A

∑
i

xij = 1 j ∈ B

xij ≥ 0 i ∈ A, j ∈ B

(1.97)

We can see that if a linear program relaxation has an integral solution then it must be an
optimum solution to the integer program. In the special case of the perfect matching problem
the constraint matrix has a special form and the following theorem holds

Theorem 13 Any extreme point of the relaxed problem P is a 0− 1 vector and is the incidence vector of
a perfect matching

The Hungarian Algorithm solves this problem in O(n3) time.

hungarian(G)
1 y = 0, M = ∅
2 while M is not perfect
3 if ∃ augmenting path P ∈ Gy = (A ∪B, Ey)
4 M = M∆P
5 else
6 modify y while maintaining M ⊆ Ey

Comment Assume cost cab is non-negative. For any matching M we may formulate the dual problem:
∀ a ∈ A, b ∈ B, ya + yb ≤ cab. Then, to minimize the cost, we aim to maximize the
dual linear program corresponding to ya + yb. Also, define Ey to be the set of tight edges
corresponding to some solution y, i.e. Ey = {(a, b) : ya + yb = cab}

• Start with some dual feasible solution, i.e. y = 0.

• Repeatedly augment M until it is perfect. At every time step if we can’t augment M
using tight edges then we modify y until we can.
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• Our goal is to find a perfect matching M while also satisfying the invariant M ⊆ Ey

• By maintaining the invariant we have, by complementary slackness, that M is a min
cost perfect matching24 24M is a perfect matching and M ⊆

Ey is comprised of tight edges, so the
slack bounds on y are OK and in fact
still lead to M being an optimal min
cost perfect matching

We had previously handwoven how to modify y.

• Let Gy,M be a directed graph with edges in M from B → A and edges not in M from
A→ B. By extension Gy,M is also a graph of tight edges

• Let U be the set of exposed vertices and L be vertices reachable in Gy,M from U ∩A.

Figure 9. In other terms: L is the set of vertices reachable from the left side of the bipartite graph through
the directed graph we built, from an exposed (unmatched) vertex

• Assume no augmenting path exists. Then U ∩ L ∩B = ∅.

• By Köning’s theorem, no edges of Gy are between A ∩ L and B − L

• Define δ = min {ca,b − ya − yb : a ∈ A ∩ L, b ∈ B − L} > 0. In other words take a
subset of the vertices and add/subtract a small value to/from the vertices in the subset,
in our case the largest value such that y is still feasible, since adding smallest cab−ya−yb

to ya or subtracting it from yb still permits the inequality ya + yb <= cab to hold. Apply
modifications
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– ya ← ya + δ for a ∈ A ∩ L

– yb ← yb − δ for b ∈ B − L

By definition after the modification with δ y is still feasible. Also, M ⊆ Ey after modi-
fication still since if (a, b) ∈ M, b ∈ B ∩ L , then a ∈ A ∩ L. All reachable vertices are still
reachable in the new Gy,M , and b is now newly reachable from a.

On termination we have an incidence vector of a perfect matching and a dual feasible
solution. By complementary slackness they must therefore be optimal. Since we picked the
perfect matching from tight edges we have also proved an integral solution to the linear pro-
gram relaxation, and therefore an optimal solution to the integer program.

The presented approach is O(n4): Each≤ n
2 modifications to y, M grows by 1 edge25 25Each modification to y a new vertex

in B enters L, but only after n
2 does an

exposed vertex enter

. To-
tal number of iterations is O(n2), each of which are O(n2). Better data structures can improve
this to O(n3)

Subsection 1.9

MinimumWeight Perfect Matching

Subsection 1.10

Integer Programming

Definition 20 An integer program is a linear program where all variables are restricted to be integers.

Figure 10. Feasible region are points in the polytope

A minimum weight perfect matching problem can be formulated as an integer program
The minimum weight perfect matching problem can be formulated as follows:
Let OPT (G, w) = min {w(C) : C is a vertex cover }

• LP (G, w) is the value of the LP

• OPT (G, w) is the value of the integer problem (min. weight of a vertex cover) and is≥
the LP value

Since the solution of the inte-
ger problem

Consider an integer program as follows:
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Subsection 1.11

Rounding & Approximation Algorithms

Many natural and important optimization problems are NP-hard. So what do we do?

1. Approximation: output an approximately optimal solution in worst-case polynomial
time

2. Algorithms that are efficient on special classes of the problem, i.e. Max Cut problem in
planar graphs.

3. Algorithms that are exponential in some parameter, i.e. 2O(k)poly(n) and then hope that
the parameter is small.

1.11.1 Min Weighted Vertex Cover

One such problem that we may be interested in is the generalized vertex cover problem, which
is NP-hard for general graphs. However, we may arrive at a Factor 2 approximation26 26Can find a cover C in polynomial

time such that w(C) ≤ 2 · w(OP T )
where OP T is the optimal solution

via
formulations as an integer program, relaxing to an LP, and then rounding the possibly optimal
LP solution to a {0, 1} IP solution (or something close to it). In this section we will consider a
generalization of the vertex cover problem, where we are given a graph G = (V, E) and vertex
weights w ∈ RV and we want to find a min-weight vertex cover (not just a vertex cover of
min size).

Figure 11. The IP is described by the constraint where xu = 1 if u is in C . The relaxation is the
same but with the variables names changed and the integer constraint dropped. Also we can remove the
constraint that yu ≤ 1 if we want but in any case we are minimizing on yu and we are rounding off to
{0, 1} anyways

1.11.2 Deterministic Rounding

Our goal is to show that

LP (G, w) ≤ OPT (G, w) ≤ 2 · LP (G, w) (1.98)

Comment Deterministic rounding: round to 1 if ≥ 1
2 and 0 otherwise.

Let y be an optimal solution and define the set C of vertex cover vertices from the LP

C =
{

u ∈ V : yu ≥
1
2

}
(1.99)

For this scenario xu = 1 in the integer program implies u ∈ C and therefore yu ≥ 1
2 in

the LP. Conversely if xu = 0 in the IP then yu < 1
2 .

We make two claims about C :

1. C =
{

u ∈ V : yu ≥ 1
2
}
is a vertex cover. The proof follows from the fact that if an edge

(u, v) we have weights yu + yv ≥ 1, the edge E must be in the vertex cover. C is the
set of vertices with weights ≥ 1

2 , so we have this claim holding

2. w(C) ≤ 2 ·LP , since w(C) =
∑

wuxu ≤
∑

wnyn = LP and the ratio between xu and
yu is given by xu ≤ 2 · yu.
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Therefore we have OPT ≤ 2 · LP .
Note that although the LP
does not always have an in-
tegral optimal solution, it will
always have a solution that
uses 0, 1, or half.

1.11.3 Set Cover

Given an input of sets S1 . . . , Sm ⊆ [n] where
⋃m

i=1 Si = [n] and weights w ∈ Rm, find set
C ⊆ [m] such that

•
⋃

i∈C Si = [n]

• w(C) =
∑

i∈C wi is minimized

Note that vertex cover is a spe-
cial case, since no element ap-
pears in a set more than once.
We’re looking here for a fac-
tor O(log(n)) approximation,
which is the best possible as-
suming P ! = NP

Our approach to relaxing and rounding the problem is to use the same approach as before.
Integer program:

min
m∑

i=1
wixi

subject to
m∑

i,j∈S

xi ≥ 1 for all j ∈ [n]

xi ∈ {0, 1} for all i ∈ [m]

(1.100)

And as usual, the LP relaxation removes the integer constraint

min
m∑

i=1
wiyi

subject to
m∑

i,j∈S

yi ≥ 1 for all j ∈ [n]

0 ≤ yi ≤ 1 for all i ∈ [m]

(1.101)

Summing over all the sets that contain j and adding up all of the indicator variables27 So 27 indicator variable xi = 1 ⇔ i ∈ C

for every j at least one of the xi is 1, i.e. it should be in the cover.
Instead of applying the more naive approach of rounding to 0, 1 based on a threshold,

we can use randomized rounding, where the LP solution is used as a probability for the IP
solution taking on values 0 or 1.

1 y = optimal LP solution
2 for t = 1 . . . , l = ln(2n)
3 Ct = ∅
4 For i . . . , m add i to Ct with probability yi

5 C = C1 ∪ . . . , Cl

The idea behind this is to create a bunch of mini set set covers, and then take their union
We make a number of claims about the above algorithm

Lemma 4 E[w(C)] ≤ l · LP

Proof Define an indicator random variable
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zt,i =
{

1 if i ∈ Ct

0 otherwise
(1.102)

Since C is the union of all Ci, the weight of C is at most the sum of weights of all Ci

l∑
t=1

E[w(Ct)] =
l∑

t=1
E[

m∑
i=1

wizt,i] =
l∑

t=1

m∑
i=1

wiE[zt,i] =
l∑

t=1

m∑
i=1

wiyi = L = l · LP

(1.103)
The intuition follows from realizing that the probability of an element being in the cover is
yi, so the expectation of zt,i is given by yi

The second claim we make is:
Lemma 5

P (C C is a vertex cover ) ≥ 1/2 (1.104)

Proof Our goal is to show that the probability of any element being covered is at least 1
2n and

then we can take an union bound to take it to 1
2 . The probability of an element j not

being covered is the probability that each set C1 . . . , Cl does not cover j. Since each set
is picked independently we can find this probability just by taking the product.

∀ j ∈ [n] P [j /∈
⋃
i∈C

] =
l∏

t=1
P [j ∈

⋃
i∈ct

Si] (1.105)

Because we add to Ct with probability yi in an independent process, so the terms in the
product are really the same thing.

P [j ∈
⋃

i∈ct

Si] =
l∏

t=1
(

∏
i:j∈Si

(1− yi))) (1.106)

The inner
∏

goes all sets Si where Si contains j and denotes the probability that we did
not pick any of the sets that contain j (since yi is the probability that we picked a set
containing j).
We may simplify the above expression via 1 − x ≤ e−x and plugging in our choice for
l = ln 2n

In practice we would want to
have l be a parameter and then
set the value only once we get
to a point like where we are
now.

l∏
t=1

(
∏

i:j∈Si

(1− yi))) ≤ (e−
∑

i:j∈Si
yi)l ≤ e−l ≤ 1

2n
(1.107)

And the proof follows from an union bound

P [∃ j : j ∈
⋃

j∈C

Si] ≤
n∑

j=1
P [j ∈

⋃
i∈C

Si] ≤
1
2 ⇒ P (C C is a vertex cover ) ≥ 1/2

(1.108)

Comment One edge case we need to consider is when w(C) is small only when C is not a cover. A fix
for this is to repeat the algorithm until C is a set cover which gives an expected weight is
E[w(C)|C a cover ]. Is this still small?
We know that l · LP ≥ E[w(C)]. E[w(C)] can be rewritten as
E[w(C)|C is a cover ]P (C is a cover ) + E[w(C)|C is not a cover ]P [C is not a cover ].
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We know that the weight is always ≥ 0, so we can bound the 2nd term to be ≥ 0 at least.
This is at least ≥ E[w(C)|C is a cover ] · 1

2 , so

E[w(C)|C is a cover ] ≤ 2 · l · LP ≤ 2 · l ·OPT = O(log n) ·OPT (1.109)

1.11.4 Chernoff Bound

Definition 21 Chernoff Bound:
Let X1 . . . , Xn ∈ {0, 1} be independent random variables, not necessarily uniform or iden-
tically distributed. If X =

∑n
i=1 Xi and E[x] ≤ µ

P (X ≥ (1 + δ)µ) ≤ ( eδ

(1 + δ)(1+δ) )µ (1.110)

For 0 ≤ δ ≤ 1, RHS is ≤ e
−δ2µ

3

Compare this with 1
δ2µ from

Chebyshev’s inequality:
the Chernoff bound is ex-
ponentially smaller than
Chebyshev’s

The Chernoff trick is as follows: for any t ≥ 0, by Markov’s inequality we have

P (X ≥ (1 + δ)µ) = P (etX ≥ et(1+δ)µ) ≤ E[etX ]
et(1+δ)µ

(1.111)

X = X1 + . . . , Xn,
X1 . . . , Xn ∈ {0, 1} and
independent

Note, by independence,

E[etX ] = Eet
∑n

i=1
Xi = E

[
n∏

i=1
etXi

]
=

n∏
i=1

E[etXi ] (1.112)

So now the question is can we bound E[etXi ] in some useful way? Since E[X] ≤ µ,

P (X ≥ (1 + δ)µ) =≤ E[etX ]
et(1+δ)µ

≤ e(et−1)µ

et(1+δ)µ
= exp

{
−µ + etµ− t(1 + δ)µ

}
(1.113)

We then want to minimize the RHS w.r.t t, i.e. take the derivative and set it to 028 28Validate that it is a convex function

t = ln(1 + δ) (1.114)

So if δ ≥ 0, then t ≥ 0, and we have the following bound

P (X ≥ (1 + δ)µ) ≤ exp (µδ − ln(1 + δ)(1 + δ)) = eδ

(1 + δ)(1+δ)

µ

(1.115)

Example Suppose we throw n balls into n bins uniformly and at random.

Theorem 14 Theorem: No bin has no more than O( log n
log log n ) balls with probability ≥ 1

2

We can prove any combina-
tion of n balls or m bins quite
easily with Chernoff bounds
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Proof Let the random variable Xij = 1 if ball j lands in bin i, 0 otherwise.

Xi =
n∑

j=1
Xij = number of balls in bin i (1.116)

E[Xij ] = P [Xij = 1] = 1
n

(1.117)

E[Xi] =
n∑

j=1
E[Xij ] = n

n
= 1 (1.118)

Apply Chernoff with µ = 1 and 1 + δ = c log 2n
log log n

P [Xi ≥
c log 2n

log log n
] ≤ eδ

(1 + δ)1+d

1

(1.119)

Let’s handwave a little bit: take 1 + δ ≫ e

≈ 1
(1 + δ)1+δ

= exp
{
−c log 2n

log log n
log

(
c log 2n

log log n

)}
≈≤ 1

((2n)c) ≤
1

2n
(1.120)

The right term in the exp is
approximately on the order of
log log n and we can cancel
things out

And then apply an union bound

Example Multi commodity Flow Problem:
Given a chip with wire channels, connect locations with wires such that no common channel
is overloaded.
More formally, given an undirected graph G = (V, E) and vertices s1, t1, . . . , sktk , find
paths in Pi in G connecting si and ti so that the maximum number of paths going through
any edge is minimized, i.e. minimize the load on any edge. 29 29This is NP hard

The LP relaxation is as follows
Let Pi be all paths between si, ti. P =

⋃k
i=1 Pi. Then introduce variable xp for every Pi

to relax the exponential size
TODO: take screenshots of the problems
And then this reduces the size of the problem to one that is polynomial in the size of the

input. Then we can solve the LP to get the optimal solution (of the relaxed problem), yp. This
gives us a probability distribution over the paths over any pair of terminals. Then we can
sample from said probability distribution and that gives us our approximation algorithm. If
OPT ≥ 1 it turns out we can get a O( log n

log log n ) approximation.

Comment And that’s it for the course!

Section 2

ECE568 Computer Security

Subsection 2.1

Refresher & Introduction

Comment I’ve found that the way that this course is organized does not lend itself well to well-
organized headers and notes. Apologies for the train-of-thought style.
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Software systems are ubiquitous and critical. Therefore it is important to learn how to
protect against malicious actors. This course covers attack vectors andways to design software
securely

Data representation: It’s important to recognize that data is just a collection of bits
and it is up to us to tell the computer how it should be interpreted. Oftentimes we can make
assumptions, for example assume that an int is an int. But what if we end up beingwrong about
it? Many security exploits rely on data being interpreted in a different way than originally
intended. For example,

1 unsigned long int h = 0x6f6c6c6548; // ascii for hello
2 unsigned long int w = 431316168567; // ascii for world
3 printf("%s %s", (char*) h, (char*) w);

Listing 1: An innocent example of where we should be careful about data representation. This
prints hello world

This courses makes use of Intel assembler. TLDR:

• 6 General-purpose registers

• RAX (64b), EAX(32b), AX(16b), AH/AL(8b), etc

Note that the stack grows downwards and the heap grows upwards. Stack overflows can
occur and can be a source of vulnerability.

GDB offers some tools for examining stacks

• break: create a new breakpoint

• run: start a new process

• where: list of current stack frames

• up/down: move between frames

• info frame display info on current frame

• info args: list function arguments

• info locals: list local variables

• print: display a variable

• x display contents of memory

• fork: Creates a new child process by duplicating the parent. The child has its own new
unique process ID

• exec: Replaces the current process with a new process

The fork-exec technique is
just a pair of fork and exec
system calls to spawn a new
program in a new process



ECE568 Computer Security Refresher & Introduction 41

2.1.1 Security Fundamentals

The three key components of security are:

• Confidentiality: the protection of data/resources from exposure, whether it be the con-
tent or the knowledge that the resource exists in the first place. Usually via organiza-
tional controls (security training), access rules, and cryptography.

• Integrity: Trustworthiness of data (contents, origin). Via monitoring, auditing, and cryp-
tography.

• Availability: Ability to access/use a resource as desired. Can be hard to ensure; uptime,
etc...

Together they form an acryonym: CIA. A system is considered secure if it has all three of
these properties for a given time. The strength of cryptographic systems can be evaluated by
the number of bits of entropy or their complexity. For example, a 128-bit key has 21̂28 possible
values. This would take a lot of time to break, and a 256-bit key even longer. Availability
is harder to measure quantitatively and is instead traditionally measured qualitatively. For
example, a system may be available 99.9% of the time. But this doesn’t really measure w.r.t
security.

Some security terms:

• Another security concept is the threat, or any method that can breach security.

• An exercise of a threat is called an exploit and a successful exploit causes the system to
be compromised. Common threats include internet connections/open ports.

• Vulnerabilities are flaws that that weaken the security of a system and can be difficult
to detect. For example an unchecked string copy can cause a buffer overflow and allow
an attacker to execute arbitrary code

• Compromises are the intersection between threats and Vulnerabilities, i.e. when an
attacker matches a threat with a vulnerability (i.e. matching a tool in the attacker’s
arsenal with a weakness)

• Trust : How much exposure a system has to an interface. For example a PC might have
a lot of trust in the user.

The leading cause of computer security breaches are humans. We are prone to making
mistakes. A general trade-off exists when designing secure systems for humans; the more
secure a system becomes the less usable it tends to be. One way of measuring the quality of a
security system is how secure it is while maintaining usability

2.1.2 Reflections on Trusting Trust

Comment Reflections on Trusting Trust is a paper by Ken Thompson that discusses the trust and
security in computing. Cool short read.
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Figure 12. Teaching a compiler what the "\v" sequence is. We may add a statement to return the ascii
encoding of \v (11), compile the compiler, and then use it to compile a program that knows what \v is.

. We may then alter the source to be like Figure 2.3 without any mention of \v but still
compile programs with \v just fine.
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Next, consider the above scenario where we insert a login Trojan to insert backdoors into
code matching the unix login function. We may then compile the c compiler to do just that,
and then change the source to what it should look like without the Trojan. Compiling the
compiler one more time will now produce a compiler binary that looks completely innocent
but will reinsert the Trojan wherever it can.

The moral of the story is that you can’t trust code that you didn’t totally create yourself.
But it’s awfully difficult to use only code written by oneself. So take security seriously.

Subsection 2.2

Software Code Vulnerabilities

Recall: the stack is used to keep track of return addresses across function calls; storing a bread-
crumb trail. Another key thing sitting in the stack are local variables. A common theme in the
course is that computing tends to conflate execution instructions with data.

Common data formats and structures create an opportunity for things to get confused
(and for attackers to take advantage of). For example, a buffer-overflow attack can end up
overwriting that return address breadcrumb trail and then execute arbitrary code.



ECE568 Computer Security Software Code Vulnerabilities 44

Figure 13. Bufferoverflow to write to the return address. Shellcode is a sequence of instructions that is
used as the payload of an attack. It si called a shellcode because they commonly are used to start a shell
from which the attacker can do more.

There are ways to find out where that return address is (or at least reasonably guess). This
is discussed more in detail later; for now we’ll assume that they have it figured out.

A common technique to make this easier is to inject a bunch of NOPs before the start of
the shellcode. So that we don’t need to be as precise as needed in order to find the shellcode
start.

One technique for finding the RA would be to incrementally increase the size of the buffer
overflow until we get a segfault – at this point the segfault would tell youwhatmemory address
it was trying to access and possibly the values it saw there instead as well.
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Figure 14. Can create a RA sled with a NOP leading to shellcode and then try it from e.g. 0x1000, 0x2000
and so forth to find where to attack from.

Figure 15. Another technique may involve placing shellcode all over the place, of which each one may
be a valid entrypoint into the shellcode.

Subsection 2.3

Format string Vulnerabilities

1 spirntf(buf, "Hello %s", name);

sprint is similar to printf except the output is copied into buf. The vulnerability is
simiar to the buffer overflow vulnerability. The difference is that the attacker can control the
format string.

Consider the following:

1 char* str = "Hello world";
2 printf(str); // 1
3 printf("%s", str); // 2
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Despite it looking different there are differences in these two ways to print hello world.
The first argument is a format string, which is different from just a parameter. A format string
contains both instructions for the c printing library as well as data. This means that the first
method can be exploited if the attacker has access to the format string. A more complex vul-
nerability is with snprintf (which limits the number of characters written into buf).

1 void main() {
2 const int len = 10;
3 char buf[len];
4 snprintf(buf, len, "AB%d%d", 5, 6);
5 // buf is now "AB56"
6 }

• Arguments are pushed to the stack in reverse order

• snprintf copies data from the format string until it reaches a %. The next argument is
then fetched and outputted in the requested format

• What happens if there are more % parameters than arguments? The argument pointer
keeps moving up the stack and then points to values in the previous frame (and could
actually look at your entire program memory, really)

1 void main () {
2 char buf[256];
3 snprintf(buf, 256,

"AB,%08x,%08x,%08x,%08x,%08x,%08x,%08x,%08x,%08x,%08x", 5);↪→

4 printf(buf);
5 // AB,00000005,00000000,29ee6890,302c4241,2c353030,30303030,
6 // 39383665,32346332,33353363,30333033
7 // if we look at the 3rd clause as ascii we get '0,BA'
8 // (recall intel little endian) i.e. we've read up far enough to

see the local variable↪→

9 // specifying the format string pushed onto the stack earlier
10 }

Figure 16. ASCII decoding
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Now there’s a potential problem: information leakage (of important info further up the
stack). Programmers may not pay attention to sanitizing input like language config.

• %n: Assume then next argument is a pointer and then it writes the number of characters
printed so far into that pointer.

• This can be abused by %n write to the return address and then overwrite it with the
address of the shellcode.

How an exploit may look like for this is as follows:

1. Consume the 123 argument (%x)

2. Have the return address sitting in the beginning of the memory

3. Overwrite the RA value with the start of shellcode

There are some problems with this because on modern machines addresses are very large
and it can be impractical to create a gigabyte-sized buffer. Instead we can just divide the prob-
lem up and write multiple 8 bit numbers

Figure 17. The printf count increments by 243 with %243d. Shorthand



ECE568 Computer Security Double-Free vulnerability 48

Figure 18. The gaps are there because

Dividing the problem into pieces; using %hhn and %nnx to write 8 bits at a time. Note that this writes the printf
counter into the pointer at the
argument. This drastically de-
creases the buffer size needed

If the bytes beingwrittenmust be written in decreasing order we can do this by structuring
our pointers in a way that we write it in reverse order (don’t need to start with LSB). Another
option is

Subsection 2.4

Double-Free vulnerability

Freeing a memory location that is under the control of an attacker is an exploitable vulnera-
bility

1 p = malloc(128);
2 q = malloc(128);
3 free(p);
4 free (q);
5 p = malloc(256);
6 // this is where the attack happens; the fake tag, shell code, etc
7 strcpy(p, attacker_string);
8 free(q);

Note that the c free function takes a reference (not necessarily a pointer) to the memory
location to be freed. It does not change the value of the free’d pointer either.
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Malloc places a doubly-linked-list of chunk bits in memory to describe the memory al-
located. free sets the free bit, does the various doubly linked list operations (looking at the
pointer values of its neighbours in order to remove itself) and also tries to consolidate adjacent
free regions. It assumes that it is passed the beginning of the allocated memory as well as go
find the tag associated with the region (which is in a consistent place every time).

The attacker can drop fake tags into memory just ahead of the value we want to overwrite
and then we can use the free() call to overwrite memory with the attacker’s data. For example
we can create a fake tag node with a prev and next pointer. We make the next pointer be
the address of the return address. And then "prev" can contain the address of the start of our
shellcode. So freeing on this fake tag will overwrite the return address with the shellcode start.

Comment Note that this is not possiblewith a single free if you are not able towrite to negativememory
indicies. The part that makes this attack works is that the double free allows the attacker
to write a fake tag just before the next tag in a totally valid way. Doing this with a single
free would also involve writing to memory that the program doesn’t own. (recall: how the
memory manager works)

Subsection 2.5

Other common vulnerabilities

The attacks we have seen have involved overwriting the return address to point to injecting
code. Are there ways to exploit software without injecting code? Yes – return into libc i.e.
use libc’s system library call which looks already like shell code. This can be accomplished
with any of the exploits we have already talked about.

I.e.

• Change the return addresses to point to start of the system function

• Inject a stack frame on the stack

• Before return sp points to &system

• System looks in stack for arguments

• System executes the command, i.e maybe a shell

• Function pointers
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• Dynamic linking

• Integer overflows

• Bad bounds checking

2.5.1 Attacks without overwriting the return address

Finding return addresses is hard. So we can use other methods to inject code into the program.

• Function pointers: an adversary can just try to overwrite a function pointer

• An area where this is very common is with dynamic linking, i.e. functions such as printf.

• Typically both the caller of the library function and the function itself are compiled to
be position independent

• We need to map the position independent function call to the absolute location of the
function code in the library

• The dynamic linker performs this mapping with the procedure linkage table and the
global offset table

– GOT is a table of pointers to functions; contains absolute mem location of each of
the dyn-loaded library functions

– PLT is a table of code entries: onee per each library function called by program, i.e.
sprintf@plt

– Similar to a switch statement
– Each code entry invoes the function pointer in the GOT
– i.e. sprintf@plt may invoke jmp GOT[k] where k is the index of sprintf in the GOT
– So if we change the pointers in the offset table we can make the program call our

own code, i.e. with objdump.30 30PLT/GOT always appears at a known
location.

2.5.2 Return-Oriented Programming

• An exploit that uses carefully-selected sequences of existing instructions located at the
end of existing functions (gadgets) and then executes functions in an order such that
these gadgets compose together to deliver an exploit.

• This can be done faster by seeding the stack with a sequence of return addresses corre-
sponding to the gadgets and in the order we want to run them in.

Subsection 2.6

Software Code Vulnerabilities

Recall: the stack is used to keep track of return addresses across function calls; storing a bread-
crumb trail. Another key thing sitting in the stack are local variables. A common theme in the
course is that computing tends to conflate execution instructions with data.

Common data formats and structures create an opportunity for things to get confused
(and for attackers to take advantage of). For example, a buffer-overflow attack can end up
overwriting that return address breadcrumb trail and then execute arbitrary code.



ECE568 Computer Security Software Code Vulnerabilities 51

Figure 19. Bufferoverflow to write to the return address. Shellcode is a sequence of instructions that is
used as the payload of an attack. It si called a shellcode because they commonly are used to start a shell
from which the attacker can do more.

There are ways to find out where that return address is (or at least reasonably guess). This
is discussed more in detail later; for now we’ll assume that they have it figured out.

A common technique to make this easier is to inject a bunch of NOPs before the start of
the shellcode. So that we don’t need to be as precise as needed in order to find the shellcode
start.

One technique for finding the RA would be to incrementally increase the size of the buffer
overflow until we get a segfault – at this point the segfault would tell youwhatmemory address
it was trying to access and possibly the values it saw there instead as well.
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Figure 20. Can create a RA sled with a NOP leading to shellcode and then try it from e.g. 0x1000, 0x2000
and so forth to find where to attack from.

Figure 21. Another technique may involve placing shellcode all over the place, of which each one may
be a valid entrypoint into the shellcode.

Subsection 2.7

Format string Vulnerabilities

1 spirntf(buf, "Hello %s", name);

sprint is similar to printf except the output is copied into buf. The vulnerability is
simiar to the buffer overflow vulnerability. The difference is that the attacker can control the
format string.

Consider the following:

1 char* str = "Hello world";
2 printf(str); // 1
3 printf("%s", str); // 2
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Despite it looking different there are differences in these two ways to print hello world.
The first argument is a format string, which is different from just a parameter. A format string
contains both instructions for the c printing library as well as data. This means that the first
method can be exploited if the attacker has access to the format string. A more complex vul-
nerability is with snprintf (which limits the number of characters written into buf).

1 void main() {
2 const int len = 10;
3 char buf[len];
4 snprintf(buf, len, "AB%d%d", 5, 6);
5 // buf is now "AB56"
6 }

• Arguments are pushed to the stack in reverse order

• snprintf copies data from the format string until it reaches a %. The next argument is
then fetched and outputted in the requested format

• What happens if there are more % parameters than arguments? The argument pointer
keeps moving up the stack and then points to values in the previous frame (and could
actually look at your entire program memory, really)

1 void main () {
2 char buf[256];
3 snprintf(buf, 256,

"AB,%08x,%08x,%08x,%08x,%08x,%08x,%08x,%08x,%08x,%08x", 5);↪→

4 printf(buf);
5 //

AB,00000005,00000000,29ee6890,302c4241,2c353030,30303030,39383665,↪→

6 // 32346332,33353363,30333033
7 // if we look at the 3rd clause as ascii we get '0,BA' (recall

intel little endian) i.e. we've read up far enough to see the
local variable specifying the format string pushed onto the stack
earlier

↪→

↪→

↪→

8 }

Figure 22. ASCII decoding
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Now there’s a potential problem: information leakage (of important info further up the
stack). Programmers may not pay attention to sanitizing input like language config.

• %n: Assume then next argument is a pointer and then it writes the number of characters
printed so far into that pointer.

• This can be abused by %n write to the return address and then overwrite it with the
address of the shellcode.

How an exploit may look like for this is as follows:

1. Consume the 123 argument (%x)

2. Have the return address sitting in the beginning of the memory

3. Overwrite the RA value with the start of shellcode

There are some problems with this because on modern machines addresses are very large
and it can be impractical to create a gigabyte-sized buffer. Instead we can just divide the prob-
lem up and write multiple 8 bit numbers

Figure 23. The printf count increments by 243 with %243d. Shorthand
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Figure 24. The gaps are there because

Dividing the problem into pieces; using %hhn and %nnx to write 8 bits at a time. Note that this writes the printf
counter into the pointer at the
argument. This drastically de-
creases the buffer size needed

If the bytes beingwrittenmust be written in decreasing order we can do this by structuring
our pointers in a way that we write it in reverse order (don’t need to start with LSB). Another
option is

Subsection 2.8

Double-Free vulnerability

Freeing a memory location that is under the control of an attacker is an exploitable vulnera-
bility

1 p = malloc(128);
2 q = malloc(128);
3 free(p);
4 free (q);
5 p = malloc(256);
6 // this is where the attack happens; the fake tag, shell code, etc
7 strcpy(p, attacker_string);
8 free(q);

Note that the c free function takes a reference (not necessarily a pointer) to the memory
location to be freed. It does not change the value of the free’d pointer either.
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Malloc places a doubly-linked-list of chunk bits in memory to describe the memory al-
located. free sets the free bit, does the various doubly linked list operations (looking at the
pointer values of its neighbours in order to remove itself) and also tries to consolidate adjacent
free regions. It assumes that it is passed the beginning of the allocated memory as well as go
find the tag associated with the region (which is in a consistent place every time).

The attacker can drop fake tags into memory just ahead of the value we want to overwrite
and then we can use the free() call to overwrite memory with the attacker’s data. For example
we can create a fake tag node with a prev and next pointer. We make the next pointer be
the address of the return address. And then "prev" can contain the address of the start of our
shellcode. So freeing on this fake tag will overwrite the return address with the shellcode start.

Comment Note that this is not possiblewith a single free if you are not able towrite to negativememory
indicies. The part that makes this attack works is that the double free allows the attacker
to write a fake tag just before the next tag in a totally valid way. Doing this with a single
free would also involve writing to memory that the program doesn’t own. (recall: how the
memory manager works)

Subsection 2.9

Other common vulnerabilities

The attacks we have seen have involved overwriting the return address to point to injecting
code. Are there ways to exploit software without injecting code? Yes – return into libc i.e.
use libc’s system library call which looks already like shell code. This can be accomplished
with any of the exploits we have already talked about.

I.e.

• Change the return addresses to point to start of the system function

• Inject a stack frame on the stack

• Before return sp points to &system

• System looks in stack for arguments

• System executes the command, i.e maybe a shell

• Function pointers
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• Dynamic linking

• Integer overflows

• Bad bounds checking

2.9.1 Attacks without overwriting the return address

Finding return addresses is hard. So we can use other methods to inject code into the program.

• Function pointers: an adversary can just try to overwrite a function pointer

• An area where this is very common is with dynamic linking, i.e. functions such as printf.

• Typically both the caller of the library function and the function itself are compiled to
be position independent

• We need to map the position independent function call to the absolute location of the
function code in the library

• The dynamic linker performs this mapping with the procedure linkage table and the
global offset table

– GOT is a table of pointers to functions; contains absolute mem location of each of
the dyn-loaded library functions

– PLT is a table of code entries: onee per each library function called by program, i.e.
sprintf@plt

– Similar to a switch statement
– Each code entry invoes the function pointer in the GOT
– i.e. sprintf@plt may invoke jmp GOT[k] where k is the index of sprintf in the GOT
– So if we change the pointers in the offset table we can make the program call our

own code, i.e. with objdump.31 31PLT/GOT always appears at a known
location.

2.9.2 Return-Oriented Programming

• An exploit that uses carefully-selected sequences of existing instructions located at the
end of existing functions (gadgets) and then executes functions in an order such that
these gadgets compose together to deliver an exploit.

• This can be done faster by seeding the stack with a sequence of return addresses corre-
sponding to the gadgets and in the order we want to run them in.

2.9.3 Deserialization attacks

• Serialization is the process of transforming objects into a format that can be stored or
transmitted over a network, i.e. to/from JSON.

• The attacker knows that the library has a vulnerability in the deserialization process and
they can exploit it by passing carefully created data to it.

2.9.4 Integer overflows

• A server processes packets of variable size

• First 2 bytes of the packet store the size of the packet to be processed

• Only packets of size 512 should be processed

• Problem: what if we end up overflowing the integer with a negative value which would
cause memcpy to copy over a lot more memory than intended.



ECE568 Computer Security Case Study: Sudo 58

1 char* processNext(char* strm){
2 char buf[512];
3 short len = *(short*)strm; // note that by default these are

signed↪→

4 if (len <= 512) {
5 memcpy(buf, strm, len); // note that the 3rd arg of memcpy is

an unsigned int↪→

6 process(buf);
7 return strm + len;
8 } else {
9 return -1
10 }
11 }

2.9.5 IoT
Subsection 2.10

Case Study: Sudo

A common program attackers target are programs that regular users can run in order to take
on elevated privileges. In unix systems one such program is sudo, for which vulnerability
CVE-2021-3156 was discovered in 2021 after lying in there for over 10 years.

• sudo will escape certain characters such as "

• Someone introduced debug logic called user_args and then copies in the contents of
argv, while un-escaping meta-characters

• Bug: if any command-line arg ends in a single backslash, then the null-terminator gets
un-escaped and thenuser_args keeps copying out of bounds characters onto the stack

• I.e. sudoedit -s ’\’ $(perl -e print "A"x1000$)

• Attacker controls the size of user_args buffer they overflow. Can control size and
contents of the overflow itself; last command-line argument is followed by the environ-
ment variables

• Had many exploit options

– Overwrite next chunk’s memory tag (same as use-after-free)
– Function pointer overwrite one of sudo’s functions
– Dynamically-linked library overwrite
– Race condition a temp file sudo creates
– Overwrite the string "usr/bin/sendmail" with the name of another executable,

maybe a shell

Subsection 2.11

Case Study: Buffer overflow in a Tesla

ConnMann (Connection Manager) is a lightweight network manager used in many embedded
systems, i.e. nest thermostats and Teslas for that manager.

In this particular vulnerability the attacker took advantage of the DNS protocol. DNS
responses include a special encoding for the hostnames which help the receiver parse the re-
sponse and allocated appropriately sized buffers. For example www.google.com is encoded as
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3www6google3com. This response also often contains a lot of repetitive information, so there
is some compression is used in the encoding as well. The one we’re interested in here is the
compression of names by encoding them as a special "field length" of 192 followed by the offset
of the other copy of the name – which enables repetitions to be encoded as 2 bytes.

CVE-2021-26675 was reported by Tesla in 2021 as a bug in ConnMan which allows an
malicious DNS reply to uncompress into a large string that can overflow an internal buffer.
This means that a remote attacker who can control or fake a DNS response could perform a
buffer overflow on ConnMan – which runs with root privileges.

Figure 25. ConnMan doesn’t initialize the dhcp_packet struct to 0, which can cause it to leak stack values
to a remote attacker (but here they must be on the same subnet as the victim). This vulnerability can be
difficult to detect since nobody checks if things are zero in the tests.

Comment So you want to a hack a tesla?

• Look at the situation; see what kind of protocols being used, etc. Get excited if it uses
something old and inane

• Look at the data coming in and our, especially if there’s any extra going in or out

• Use fuzzing tools

• Get a sense of what they are expecting us to do as well as what are ways that we
can break that example. For example is the only verification just some client-side
JavaScript?

• Break stuff

Subsection 2.12

Fault Injection Attacks

We make a lot of assumptions about how the underlying systems work. For example proper
CPU operation. Fault injection attacks take advantage of these assumptions by injecting faults
into the system, often at the hardware level.

For example: proper pipelined CPU operation depends on stable power and clock inputs.
If the glitch duration is longer than the time it takes to increment the PC and shorter than
the instruction fetch time, then we can start to see a special case: instruction skipping or
instruction corruption.p
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Figure 26. With some careful timing we can cause the CPU to skip or repeat an instruction.

Figure 27. An example of where this can be useful: skipping the JMP instruction of an IF statement

2.12.1 Hardware Demo

Consider this simple program that checks a text buffer for a password and then logs you in if
it’s correct
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Figure 28. The ATMega238P hooked up to a custom security test tool built on top of a ESP32

Our attack is to use a clock glitch32 32A series of very brief and rapid clock
pulses

at the time of the return instruction. Finding the time
of the return instruction is a bit tricky but we can just sweep across a range of times.
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Figure 29. Looking at the oscilloscope to show the sweeped input

Figure 30. Note crazy clock pulses which we try to line up with the return instruction. If we have a
really good chip we can try it with only 1 pulse, but here we use 5 pulses because we’re on a cheaper
chip. We also don’t happen to care too much about whether or not if we disrupt too many of the other
instructions.

Another attach that is a bit easier to use is the power glitch: instead of not giving it
enough time for the fetch to happen we take away the nice voltage going to the chip right at
the instruction execution time.
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Figure 31. A power glitch attack disrupts the fetch instruction or the decode

Defense for these attacks is to disallow physical access to the chip. For the power one it
can be as simple as adding a little capacitor to the power supply to smooth it out. Likewise,
there are many ways to cause controlled circuit malfunctions: lasers, strobes, EM pulses, etc.

Subsection 2.13

Reverse Engineering

Reverse Engineering, or the act of analyzing a product in order to learn something about its
design which its creator wanted to keep secret. It is a legally complicated, but generally it’s ok
for the purposes of achieving interoperability (but not for circumventing DRMs).

1 unsigned int printhelloworld() {
2 printf("Hello World!");
3 return 5;
4 }
5 int main (int argc, char *argv[]) {
6 unsigned int result = 0;
7 result = printhelloworld();
8 if (result == 4) {
9 printf("super secrete string\n");
10 }
11 return 0;
12 }
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Figure 32. Passing the binary compiled from the above code to a disassembler

With the disassembled binary we knowwhere the instruction for the if statement we were
curious about lives, so we can then just use hexedit to change the bits at that JMP to a NOP to
print out the super secret string.

Subsection 2.14

Buffer Overflow Defenses

• Audit code rigorously

• Use a type-safe language with bounds checking (Java, C#, rust)

• However, this is not always possible due to legacy code, performance, etc.

• Defending against stack smashing

– Stackshield: put return addresses on a seperate stack with no other data buffers
there

– Stackguard: a random canary value is placed just before the RA on a function call.
If the canary value changes, the program is halted. This can be enabled via a flag
on most modern compilers.

• Third-party libc i.e. libsfae which doesn’t allow for ’%n‘ in format strings

• Address space layout randomization: maps the stack of each process at a randomly se-
lected location with each invocation, so that an attacker will not be able to easily guess
the target address. GCC does do this by default.

If we really sit down and think about it, it’s basically impossible to defend against all
attacks. It’s easy to make a mistake and end up with a vulnerability. Certain vulnerabilities
can be avoided by using safer languages, but the only real defense is to be aware and careful.
One approach is what the aerospace industry does, i.e. the swiss cheese model 33 33if we stack a lot of hole-y cheese on

top of each other it will be opaque
Subsection 2.15

Cryptography
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Comment Case Study: Espressif ESP32

• Microcontroller that the prof used for the demo last class

• Programming the microcontroller usually happens during the manufacturing phase

• Flash memory is usually partitioned into the bootloader, data, and application

• In the factory the ESP32 will generate a random number (on first boot) in order which
will be used to encrypt and hash the bootloader and the data on the board. Then it
starts the applications.

• On subsequent boots the device will make recalculate the hash to make sure that the
bootloader has not been tampered with.

• More information about using PGP encryption for the data partition, etc. Not too
important.

• TLDR: lots of encryption and security features built into the chip

Comment Case Study: Door Alarm

What would a small-scale communication-channel pentest look like for this?
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1. Look at FCC report

Figure 33. In this case this was barely done so it wasn’t very useful

2. Make reasonable guesses

Figure 34. Guess that this cheap device is on unlicensed 433 MHz band

3. Listen into the signal
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Figure 35. Use a software-defined radio to inspect the signal

Figure 36. Top signal is lock, bottom signal is unlock. Here we don’t know what they are yet but
there is some sort of unique binary pattern being produced on the button clicks.

4. Replay?
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Figure 37. Can just use a radio recorder/playback device to record the signal and play it back in order
to unlock the doorlock

As it turns out industrial systems tend not be be any more secure

2.15.1 Ciphers

Cryptography is used to establish the confidentiality, integrity, authenticity, and non-
repudiation34 34Prevents a principal from denying

they have performed an action
of data.

• Ciphers an algorithm that obfuscates data so that it seems random to anyone hwo does
not possess special information called a key.

• Based on a class of functions called trapdoor one-way functions, i.e. easy to compute but
inverse is difficult to compute. Trapdoor means that given the key the inverse becomes
easy to compute35 35Note that never been

proven/disproven that one-way
functions exist. Plus if it’s been proved
it would show P ̸= NP

• Function itself should not be the critical secret (Kerckhoff’s principle)

Two common one-way functions used are factoring (z = (x ∗ y) find x,y) and discrete log
(z = xy%m – given z, x, m, find y = logx z%m)

Definition 22 Caesar (Shift) Cipher
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Figure 38. A contrived cipher

Note that even this may be difficult to crack in reasonable time with a brute-force attack if
we happen to have a large enough alphabet.

Definition 23 A slightly better cipher would be a substitution cipher

There’s a one-to-one mapping between the plaintext and the ciphertext, so we can use pat-
terns in the data to figure out a heuristic to reverse the cipher. For example in English E is
the most common letter (and there are likewise common digraphs e.g. TH, HE, etc) and as
such can be used to make informed guesses as to the substitutions being used

An improvement to the monoalphabetic substitution cipher described above is the polyal-
phabetic substitution cipher. In this case we have a set of n mappings in the cipher and change
hte mapping with every character. However these ciphers are still periodic. For small n this is
not a problem, but for large n it becomes a large challenge.
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Comment Enigma Machine

• A substitution cipher with a really large cipher during early war efforts

• Decryption/encryption via initial rotor position etc that would be agreed on.

The gold standard for encryption is the substitution cipher taken to the extreme: the one-
time-pad.

Definition 24 One-time-pad

• A random substitution is used for every character

• Think about it as using an infinite number of keys

• A message with n bits of information an OTP adds n bits of randomness to make a
completely random ciphertext –> Theoretically unbreakable

• Key overhead of 100% (key length equal to message length) and key reuse is not al-
lowed

• Cipher is malleable (bit flips in ciphertext correspond to bit flips in plaintext); requires
integrity check

• How to make a random key? Need good random number generator

• OTP is strong against ciphertext-only attacks but is exteremely weak against known-
plaintext attack (only need one pair).

Practical ciphers are ones with fixed length keys that are shorter than the message and are
independent of message length. They should also be efficient to use for encryption/decryption
while being computationally difficult without the key.

Definition 25 Symmetric key ciphers: same key to encrypt/decrpyt (stream/block ciphers)

• Stream ciphers: similar to OTP: key used to generate pseudo-random sequence of bits
and then XOR’d with plaintext. Runs a bit at a time which is good for streaming.
Suffers from synchronization problems
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• Block ciphers: encrypt/decrypt a block of bits at a time (usually 64 bits or a multiple).
Add padding if necessary.

Stream ciphers are generally simple and fast. Block ciphers are more common just due to
the history of cipher development (closed-source stream ciphers and a proliferation of open-
source block ciphers)

2.15.2 Block Ciphers

• Data Encryption Standard (DES): 56 bit key, 64 bit block.

• AES (Advanced Encryption Standard) – official standard encryption algorithm for the
US government in 2000

• Both are iterated block ciphers

• Today’s computers are fast enough that DES is considered insecure
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Figure 39. DES Feistel Ntwork

• Input is split between left and right haves. Some computation involving a portion of the
key is done on the right half and then the left and right halves are swapped, then the
output gets piped back into this process. This "round" is repeated 16 times.

• 56 bit key is put through a schedule to create sixteen subkeys. 56-bit into 2 28 bit halves,
then shifted left by 1 or 2 bites, and 2 24 bits are then selected from the halves to make
a 48 but subkey Kn. Exact number of bit selections are carefully selected.
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Figure 40. each f(Rn−1, Kn) does: 1. expansion permutation 2. XOR with subkey 3. non-linear S-box
subsitution boxes to compress 48 to 32 bit 4. permutation

Design of S-boxes is important
as this is the only part of the
cipher that is non-linear• DES is inadequate with modern computers: brute force can crack 56-bit keys in less than
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a day. A solution is to use a longer key length and chain DES multiple times; 3DES w/
a 168 bit key split into 2 56 bit times and running the algorithm three times

Block cipher encryption modes, or how to encrypt data with multiple blocks: Considerations include secu-
rity, performance, error prop-
agation, and error recovery• Electronic Cookbook (Simplest): break down into block-sized chunks & pad if necessary.

Encrypt each block separately.

– Highly parallelizable but not secure
– Cipher blocks can reveal macro structure of plaintext data since same plaintext

blocks will always encrypt to the same ciphertext blocks

– Error propagation doesn’t happen & error recovery only requires retransmission
of affected blocks and does not stop decryption

• Cipher block chaining

– Every block’s input is dependent on output of previous block. Initial value does
not have to be secret but shouldn’t be reused for multiple messages

– Good security but poor parallelism for encryption36 36decryption can be parallelized. Transmission error only af-
fects current and following block – and as for recovery the receiver can drop af-
fected blocks and still continue decryption.

• CFB (Cipher-feedback) and OFB (Output feedback) convert block ciphers into stream
ciphers, i.e. can be decrypted/encrypted in less than a full block at a time. Similar to
stream ciphers (Discussed later.) In OFB the key stream is independent of plaintext so
cipher operations can be done in advance
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2.15.3 Stream Ciphers

• Encryption/decryption with low latency, i.e. multimedia streams

• Operate one bit at a time

• Closely related to one-time pads

• No modes: can be used to encrypt data of any length

• Synchronous stream ciphers: key stream is independent of message text. State is modi-
fied by f and the key; each step uses feedback in which f uses current state to produce
the new state. Transmission error only affects the corresponding plaintext bits

• Self-synchronizing stream ciphers: key stream is dependent on the plan test. State is a
shift register; every ciphertext bit created is shifted into the shift register and fed back
as input into the key function g. So each ciphertext bit as an effect on the next n bits37 37n is the length of the shift register

• Similar properties to the one time pad; dangerous to use the same keystream to encrypt
multiple messages

• Synchronous stream ciphers must have changed keys or initialization vectors after ev-
ery message. Self-synchronizing stream ciphers must have random data inserted at the
beginning.

• Malleable; ciphertext can be changed to generate related plaintext.

• Adversaries can replay previously sent ciphertext into a stream and the cipher will
resync.

• Synchronous stream ciphers cannot be recovered unless we know exactly how much
ciphertext is lost because the keystream is independent of the plaintext. Self-
synchronizing ciphers will recover after n bits pass.
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Common ciphers used include RC4 and SEAL. RC4 is now publicly known but license is
required to use it

Figure 41. RC4 Implementation. TLDR: Use a state represented by an array of 256 chars. Use a pseudo-
random generator and the state to generate the keystream.

Stream ciphers offer better performance but are more difficult to use safely. Block ciphers
are easier and more commonly used. Nowadays just use AES & CBC is most common encryp-
tion mode for arbitrary data. ECB is safe for short chunks of data where plain text is unlikely
to repeat.

Subsection 2.16

Key Exchange

• Symmetric key encryption requires both parties to have the same key

• Key exchange must be communicated securely; if not, the key is compromised

• Pre-sharing keys is one alternative; i.e. setting keys at production time. But this is not
practical for large systems; n people need a total of n n−1

2 keys

2.16.1 Trusted third-party

Idea: have a trusted keyserver that knows everyone’s keys.

• A tells T that it wants to communicate with B
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• T sends A a session key KAB and encrypts it once with A’s key ((KAB)KA
) and once

with B’s key

• A will decrypt it’s own copy of the session key with it’s own key and then send the other
key to B

• B can now decode the session key with it’s own key. Now A and B can communicate
securely

This procedure is susceptible to a third party attacker who may capture the session key A
sends to B as well as other messages. The attacker can then replay messages to make B repeat
an action; B can’t tell if the message actually came from A

Definition 26 Needham-Schronecker protocol: a protocol for key exchange between two parties A and B
that is secure against a passive eavesdropper by using a nonce

• Messages include recipient and sender

• Receiver keeps track of sent Nonce values to prevent replay attacks

• Some action performed on the Nonce proves to the sender that the recipient is alive.
Often just adding/subtracting a constant from the nonce38 38Multiplication or division is discour-

aged due to the nature of many of these
algorithmsTrusted third party has a problem: because the system trusts the central server, if the server

is compromised, the entire system is compromised.

2.16.2 Diffie-Hellman Key Exchange

• Can be used by two parties to establish a common secret over an insecure link

• Assumes that the discrete logarithm problem is hard (modular arithmetic in a finite field)

– Limited set of n > 1 elements, each with an additive inverse x + x′ = 0 and each
nonzero element has a multiplicative inverse x · x′ = 1

– Recall: Modular arithmetic is the same as addition and multiplication but with the
result rounded by the modulus of n, i.e if our system has a modulus of 7 then
4 + 3 = ((4 + 3)%7) = 0.
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– There are no negative numbers or factions in modular arithmetic, so additive and
multiplicative inverses are as follows:

∗ E.x. the additive inverse of 4 is 3; 4 + 3 = 7→ 7%7 = 0
∗ Multiplicative inverse of 5 is 3; 5 · 3 = 15→ 15%7 = 1

– Modular arithmetic in a finite field will only work if the modulus is prime

• 43%7 = 64% = 1, log4 1%7 = 3

• What is the discrete log of log3 5%7? I.e. finding x such that 3x%7 = 5. Must try all
possible values of x until we find the correct one (and do the exponentiation!).

– Complexity of finding the log is NP − hard

Definition 27 Initialization: Alice selects n, a large prime modulus and g, a generator of the field n that
lies between (1, n− 1) Generator selection is dis-

cussed in texts on the sub-
ject. A number g is a gen-
erator of n if for each y be-
tween 1, n − 1 there exists
an x such that gx%n = y,
i.e g0, g1, . . . gn−1 yields all
numbers from 1 . . . n− 1

• Alice selects a random integer x and computes P = gx%n

• Alice sends P, g, n to Bob and keeps x to herself

• Bob selects a random integer y and computes Q = gy%n

• Bob sends Q to Alice and keeps y to himself

• Alice and bob may now both compute the secrete Qx%n ≡ P y%n ≡ gxy%n

The Diffie-Hellman attack is vulnerable to man-in-the-middle attacks. If an adversary Eve
can pretend to be Bob when communicating with Alice and pretend to be Bob when commu-
nication with Alice, then Eve can establish a shared secret with each of them without Alice or
Bob being any wiser – thereby snooping on on their communication!

The problem with this key exchange protocol is that it does not identify the remote party;
though the communication is secure we have no clear way of knowing if we are really corre-
sponding with who we think we are.

2.16.3 Public Key Cryptosystems

Public key cryptosystems use a pair of keys to establish an asymmetric cryptosystem. The
private and public keys reveal nothing about each other, but share the property that messages
encrypted with one key can only be decrypted with the other. Users keep one ‘private’ key
secret and one ‘public’ key, well, public. Then during encryption the sender may encrypt the
messages with the intended recipient’s public key and the recipient can decrypt the message
with their private key. And since only the recipient can decrypt the message, the sender can
be sure that the message is only being read by the intended recipient.

Setting up a key exchange using a public key system is straightforward; Alice can encrypt
a key x using Bob’s public key and send it to Bob. Bob can then decrypt the key with his private
key and now they have a shared key x! Two popular public key cryptosystems are RSA39 39Factoringand
DSA (Digital Signature Algorithm)40 40Discrete logs

Definition 28 RSA algorithm

1. Pick n that we can use as basis for the modular space. RSA key generation begins by
picking two very large prime numbers p and q and computing n = p · q. n can be
publicky shared since there’s no known algorithm to efficiently recover p, q from n.
41 41Size of n defines key size; i.e. 4096 bit

RSA uses 4096 bits to represent n
2. Pick our public key42 42Via Euler’s Theorem. Define ϕ = (p − 1)(q − 1). Pick e that is coprime43 43a, b are coprime if 1 is the only pos-

itive integer that evenly divides both of
them

to ϕ; this
will be our public key.
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3. A message M can be encrypted into a cryptotext message C via C = Me%n. e, n, C
can be made public, p, q, ϕ must remain secret. Note that M < n or else RSA doesn’t
work.

4. Calculate our private key, i.e. need a private key d that is the multiplicative inverse of
the public key e: e ∗ d = 1%ϕ. This d can be found efficiently through the extended
euclidean method44 44Google this, not needed for the course. d must remain private. Also, no-one else can find d since they
don’t know ϕ.

5. Recover M via the private key

• M = Cd%n = (Me%n)d%n = Me·d%n

• Since e · d = 1%ϕ⇒ (e · d) = (kϕ + 1) for some integer k

• Mkϕ+1%n = Mkϕ ·M%n = (Mkϕ%n ·M%n)
• Euler’s theorem tells us that aϕ = 1%n

• = 1 ·M%n = M since M < n

RSA has very poor resistance to spoofing since the encryption uses exponentiation;
encrypt(K ·M) = (K ·M)d = Kd + Md = encrypt(K) · encrypt(M).

Recall that a message is signed by encrypting the message with the sender’s private key.
The receiver can then decrypt the message using the sender’s public key to show that the
public key is really yours. If someone will sign messages the adversary gives them then the
adversary can trick them into signing messages that they don’t want to sign. Suppose a victim
will not sign M but the adversary can pick K and get the victim to sign K ·M and K . Then
M may be recovered.

Public key cryptography also doesn’t prevent man-in-the-middle attacks. If Eve can pre-
tend to be Alice to Bob and pretend to be Bob to Alice, then Eve can snoop without either of
them being any the wiser; despite being able to sign a message with one’s private key, public
key cryptography still suffers from an attacker passing off their public key and signature as
someone else’s. This can be resolved through the introduction of a trusted third party who
can vouch for the identity of a key. This trusted third party is called a certificate authority
(CA) and they are responsible for issuing certificates using their own private key saying that a
public key belongs to a particular person. Bob and Alice can then use this certificate to verify
that they are communicating with the right person.

• Common standard format is X509 and is used in SSL. Public infrastructure allows using
a chain of certificates to verify the identity of a key issued by a hierarchy of certificate
authorities.

• Are we going back to the trusted central server that we were trying to avoid? Yes, sort
of. But now the CA is trusted by the public and is not necessarily a single point of failure.

An alternative to having a central trusted party is to use PGP ; pretty good privacy. This
approach builds a web of trust by leveraging the fact that every user is capable of signing
certificates and that trust is transitive. If A can verify that a public key belongs to B, then A
can create a certificate for B using A’s private key. Then if C can verify A’s public key then
C can sign a certificate saying so with their private key.

Then we’ve established a chain of trust from C → A→ B and so on. If I can trust C then
I can transitively trust A and B as well. If I trust A only then I can trust B but not C .

This all sounds great until you realize that the web of trust is only as strong as the weakest
link. If C is compromised then the entire web of trust is compromised as well. This is why it’s
important to have the ability to revoke certificates. Revocation certificates are usually created
as a dual to the certificate first created for the public key, and should be stored safely so that
an adversary can’t falsely issue a revocation. They also shouldn’t be self-signed. Revocation
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lists are made public and should be referenced when verifying a certificate. If a certificate is
revoked then the certificate is no longer valid.

Common techniques when sending messages using public keys include:

• To encrypt a message: simply encrypt the message with the recipient’s public key.

• To prove that a message is coming from you, sign the message with your private key
and send the signature along with the message.

• To prevent replay attacks, include a nonce (usually just an increasing number) in the
message and sign the nonce along with the message.

Subsection 2.17

Hashes

• A one-way function that converts a large input into a small, typically fixed size output

• Low probability of collision; H(m) = h

• Can be thought of as a "fingerprint" of the input

– m is the preimage/input to hash
– h is the hash value or message digest
– H is a lossy compression function

A good hash function should have the following properties:

1. Preimage resistance: Given h, it should be computationally infeasible to find m such
that H(m) = h

2. Second preimage resistance: Given m, it should be computationally infeasible to find
m′ such that H(m) = H(m′)

3. Collision resistance: It should be computationally infeasible to find m, m′ such that
H(m) = H(m′)

Assuming that the length of the hash is n bits, then
It is also desirable for small
changes in the input to result
in large changes in the output.• Second Preimage resistance: 2n−1

• Collision resistance: 2n/2 (birthday attack)

MDC (modification detection
code) is a hash function that
is used to detect changes in a
message.

One way to make sure that a message is passed with integrity is to send a hash of the
message along a secure channel and then have the receiver recompute the hash and compare
it to the one sent. If they are the same then the message was not modified in transit.

If confidentiality is required the communicators may want to encrypt the message.
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Figure 42. Combining MDC with encryption to ensure integrity and confidentiality

Nowadays just use SHA256 (SHA2) 45 45MD5 and SHA1 are deprecated.

Definition 29 MAC: A message authentication code uses a hash to provide integrity and authentication.
A MAC is constructed as h = H(k, M) where k is the secret key and M the message. The
receiver knows that whoever generated the MAC must also know the key, thus authenticat-
ing the message source.

MACs are often constructed from symmetric ciphers.

Figure 43. CBC-MAC

This method is similar to CBC encryption for block ciphers except a single hash value is
produced at the end. Hash size is the same as the block size of the block cipher. The MAC key
must also be different from the encryption key46 46This is bad practice and can produce

a vulnerability depending on your en-
cryption schemes and their interactions

.
A MAC can be constructed by concatenating the secret key with the message and using a

mash, which creates a keyed-hash MAC (HMAC)
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Figure 44. HMAC creation

An inner and outer hash gets rid of the extension problem since this requires the inner
hash to be extended as well (which is encrypted!). HMACs are a reliable way to give strong
signatures to messages.

Figure 45. HMAC process (opad and ipad are flipped here relative to RFC 6328)

2.17.1 Hash-based data structures

• It is often useful nowadays to have a data structure that can be updated in a secure way
and to verify the integrity of a set of things instead of a single object.
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Figure 46. Merkle Tree

Comment Consider we have a bunch of data that we want to keep track of (Data blocks, lowest level of
tree in diagram). We can hash all of them and then build a binary tree from the bottom up
of the hashes. A parent of two nodes will take on the hash value of the concatenated hash
of the it’s children. And then the root node would have the hash of everything. The reason
why this is better than concatenating all the data blocks and then hashing it together is
that the individual blocks we’re hashing is a lot smaller and changing a block won’t require
rehashing along the entire set of data blocks; you will only have to hash log2 n times; from
the data block up to the root. The top hash is a hash of all the data blocks and can be used
to verify the integrity of all the data we’re looking at.

Subsection 2.18

Attacks on protocols

2.18.1 Replay Attack

Suppose an attacker Calvin cannot create validmessages but they can recordmessages between
Alice and Bob. If no replay protection is used, Calvin can simply replay the messages to Bob
and pretend to be Alice. For example consider a wireless deadbolt lock. If the lock is not
protected against replay attacks, Calvin can simply record the messages between Alice and
Bob and replay them to Bob to unlock the door. A common way to prevent replay attacks is to
use a nonce; an unique one-time value appended to a message.A nonce is an unique value47 47Random numbers are often used but

it is usually preferable to simply use
an incrementing counter as to avoid the
client on having to store a ton of nonce
values. Also, it’s usually a bad idea to
use time for nonce values; leap seconds
exist and time is tricky.
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Figure 47. Appending message with a nonce to prevent replay attacks. It’s important that the hash value
and message are both encrypted or included with the hash.

Counter also help prevent reordering attacks. An example of where a reordering attack
can be dangerous is if we’re controlling a drone; going forwards 10m and then to the right
10m is a different trajectory than going right 10m and then 10m forwards. One thing to note
is that packets can arrive out of order which means that the nonce value may not come in the
correct order – so you need to keep track of the nonce values you’ve seen before. This is called
a nonce cache.

2.18.2 SSL

The SSL protocol is a protocol for secure communication over the internet commonly used to
secure web sessions48 48And can be used to secure any appli-

cation since it operates on regular sock-
ets

. It is implemented as an application level library and is linked with both
the client and the server. It presents the same functionality as a socket but it encrypts the data
before sending it and decrypts the data before receiving it – the network doesn’t need to have
any security (i.e. SSL provides end to end security)
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SSL includes two phases:

1. Key exchange/handshake: checks versions, sets up secret key & does auth. Only happens
once, so it can be slow

• Establishes the ciphers each side supports and the version of the protocol. Estab-
lishes a shared secret key (session key). Authenticates each other’s identifies via
certificates. Note that this authenticates the machines and not the users. User auth
is usually done by the web server. Nte that client auth is optional and not done for
every SSL interaction since web servers generally connect to any client.

2. Communication: encrypts and decrypts data. Happens for every message. Needs to be
efficient.

Comment You should keep your OpenSSL version up to date since there are known vulnerabilities in
older versions and new vulnerabilities are discovered all the time.

Figure 48. Note that the client hello is sent in plaintext, which means that a man in the middle can alter
the list of ciphers it supports – a downgrade attack. If the server is OK with any cipher then a man-in-
the-middle could easily force it to pick an old and broken cipher – which motivates the server picking
the cipher. This step of the handshake is entirely completed in plaintext.
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Figure 49. The next step is the key exchange. This may look a little bit like our diffie-hellman section,
at least in our goal to produce a shared secret in a secure manner. All following communication is then
performed securely using that shared secret.

This handshake protects against: 1. spoofing via MAC, 2. reordering protection (nonce),
3. replay (nonce), 4. man-in-the-middle (certificate).

Figure 50. Once we go into communication mode SSL has a few more tricks to protect against attacks.
Note that compression is somewhat controversial since it can be used to leak information about the data
being sent.

SSL generally doesn’t impose much performance penalty on the actual communication
layer since it’s only encrypting and decrypting the data using a fairly fast symmetric block
cipher. However the serbver uses asymmetric decryption during handshake (which is about
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1000x times slower than symmetric decryption). This means that for servers with a lot of SSL
work to do are bottlenecked by the handshake.49 49Consider situation when a server goes

down and then a stampeding herd4949sort of? of
clients try to reconnect.

Dedicated hardware does exist to perform
public key operations to speed up the handshake process. From a system architecture perspec-
tive it is common to set up servers in such a way for them to operate directly on cleartext and
have a seperate SSL proxy server that handles the outside world.

2.18.3 SSL Demo

Here are some steps for setting up a web server and to create a certificate for it:

1 # we need to trust someone at first. With public key auth. we just
need to trust that the certificate authority is giving keys to the
right people.

↪→

↪→

2 # We can also be our own certificate authority!
3
4 # request a new x509 certificate (cakey.pem)
5 # - v3_ca tells it that this is a certificate authority
6 # - give it a timeout and want 4096 bit key
7 openssl req -new -x509 -extensions v3_ca -keyout cakey.pem -out

cacert.pem -days 3650 -newkey rsa:4096↪→

8
9 # follow through with the prompts & optionally give the PEM a

passphrase.↪→

10 # can read the keys with: (note this will prompt for passphrase)
11 openssl rsa -in cakey.pem -text
12
13 # can read the certificate with:
14 openssl x509 -in cacert.pem -text
15
16 # now let's make a key pair for our web server
17
18 openssl genrsa -des3 -out server.key 2048
19
20 # as the server let's request a certificate for our public key
21 # from our CA; create a csr (certificate signing request)
22 openssl req -new -key server.key -out server.csr
23
24
25 # now we can sign the certificate for a year with our CA
26 # serial is for keeping track of the certificates that we've signed
27 openssl x509 -req -days 365 -in server.csr -CA cacert.pem -CAkey

cakey.pem -CAserial serial.txt -CAcreateserial -out server.crt↪→

28
29 # now we've created server.crt which is the certificate that we'll

give to the client to prove that the server is who it says it is,
at least according to the CA

↪→

↪→

30

Let’s say we try to run a server with this certificate. The client, a web browser, will check
the certificate to see if it is from a CA that it trusts. Unfortunately the CA we just isn’t trusted
(i.e. not in the client’s trust keychain) so it won’t be immediately useful for web serving. A
use case where we may want a self-signed CA is if a company wanted to monitor all internet
traffic for their employees. They could set up a proxy server that intercepts all traffic and then
they could set up a CA and sign all of their employees’ certificates. And then add the CA’s
certificate to the trust keychain of all of their employees’ computers. This way the employees’
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computers will trust the CA and will trust the certificates that the CA signs – so the employees
can access the internet as if everything is trusted by the company may watch the traffic and
make sure that employees don’t leak credit card information or something.

In practice most CAs will have one top level key stored in an absurdly secure location and
then they will have a bunch of subordinate keys that are used to sign certificates. The subor-
dinate keys are stored in a secure location and the top level key is used to sign the subordinate
keys. This way they can easily rescind subordinate keys if they get breached.

2.18.4 Web Authentication

It is impractical to require all users to use a certificate to identify themselves – hence user-
name/passwords.

Definition 30 Cookie-based authentication

1. Browser asks for username and password and gives it to the server

2. On auth server generates a big random-looking number called a HTTP cookie and
returns to the browser

3. Next time the browser visits the same server it will send the same cookie back to the
server: the cookie is used as an authentication token

4. Web servers use cookies to authenticate the user as well as store session information,
etc.51 51If a cookie can be stolen before it ex-

pires it can be used to impersonate the
user5. Should have a expiry time (limits damage from exposed cookies) and be as ephemeral

as possible

6. Should be hard to forge a cookie and should not be used for authentication without
SSL (or else they are easily stolen)

A drawback of cookies is that they can raise privacy concerns; web servers can now track
users’ browsing habits within a site as well as across sites as well.

Recall: GET is used to read
data from a server and POST
is used to update data on a
server. The line has been
somewhat blurred in recent
years.

Browser-based attacks are common and usually performed via some sort of cleverly for-
matted GET or POST requests to the server (with XSS).

A GET request contains a header, a blank line, and the content. The POST is almost the
same, except it requires a few more header fields to specify the content type and length.

It is very common for sites to have web browsers execute small javascript programs, i.e.
some logic to run onclick when a button is clicked. One way to exploit this is possibly to
find a way to make the browser think that data is actually a program – like buffer overflow
attacks!

browserspy.dk is a website
that shows you how much
information your browser is
leaking to websites.

Javascript can be used to read and steal data

• Cookies can be read by JS by accessing the document.cookie variable

• Script can incorporate the cookie data into a request to the attacker server and send it
back

• Protected via the Same Origin Policy: dictates that scripts from one origin (a web site)
cannot access or set the properties of a document from another origin/website.

• URLs are treated as having the same origin if they are on the same protocol, hostname,
and port number.. Browser isolates different sites into different identities. Note that
domains under the control of the same organization, i.e. google.ca or google.com are not
considered the same origin

browserspy.dk
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Many sites include javascript from third-party sources, i.e. from ad networks. This opens
up the possibility of cross-site scripting attacks.

Definition 31 Cross-site scripting (XSS) is a vulnerability that allows a user to inject strip code into web
pages viewed by other users. Allow for stealing cookies of a victom web site and more.

1. Type 1/reflected: Attacker crafts url that targets a vulnerable site, attacker needs to
click on url for a successful attack, web site is not modified

2. Type 2/Persistent: Attacker posts malicious code on a vulnerable site, users must visit
the site to be affected, web site is modified

Figure 51. What if some code is given to the browser to the browser instead of the name? I.e. as in the
next slide?
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Figure 52. The victim website will execute the code and send the user’s cookies to the attacker. By
bouncing (reflecting) it off the server it looks like code that doesn’t violate the same origin policy.

Generally XSS is a result of poor input validation.

Comment Persistent XSS: Many sites want users to post their own content, which has conflicting re-
quirements. They want to give users the ability to post rich content but also want to make
sure that they don’t post content that harms other users (XSS). Most sites will perform input
validation (filtering) on user posts to remove code but still allow users to post rich content.

Defenses against XSS

• Convert all special characters before sending to an user, i.e. "<" -> "&lt;a"

• Whitelist characters (don’t just blacklist – too many characters to blacklist)

• Use HTTP-only cookies (cookies that can’t be accessed by javascript). This has the
downside of limiting the functionality of the site.

2.18.5 SQL Injection

Consider an insecure web application that allows users to look up their information by their
USER ID
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This may form a SQL query like this

1 select id, first, last from users where id = '%s'

Is there a way for us to exploit the server not checking for apostrophes in the query?
Consider the following query

We insert 1’ and 1 = 1 – ’

1 select id, first, last from users where id = '1' and 1 = 1 --'
2 -- Note that -- is a comment to make this valid sql

And we find that this query ends up returning the user 1! And it is easy to see how this
can be extended to get the information of every user by extending the query with an or.

What about some more complex queries? For example some databases can load a file with
the load_file. So this would give the passwd file for the database server.

1 select id, first, last from users where id = '1' union select
load_file('/etc/passwd'), 'foo' --'↪→

2 -- And whatever we want in foo..

Other ideas include

1 -- the schema
2 ' union select table\_schema, table\_name from

information\_schema.tables --'↪→

3
4 -- users and apasswords
5 ' union select user, password from dvwa.users --
6

Note that this, on any decent web service, will return a bunch of password hashes. For-
tunately most users suck at picking passwords and so we can use a rainbow table to crack the
hashes, i.e. by using hashcat;

hashcat <file_with_password_hashes>
/var/pentest/wordlists/top_100_passwords.txt

We should consider the impli-
cations of this. For example
the load_file attack would
not be possible if we ran the
sql server as a non-root server
or as an user with restricted
access.

2.18.6 Passwords

Passwords are commonly used for user authentication but have several problems:

• Users tend to pick easy passwords and share them for many systems

• Authentication is not mutual: when a user enters a password they usually don’t know
if they are sending the password to the right system
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Passwords should not be stored in the clear so that if the attacker somehow got the pass-
word file they would know the passwords of all users – so passwords are hashed with a one-
way hash and only the hash is stored. However if the attacker reverses one password hash
then the attacker will have found the password for all users using the same password (not un-
common!). This problem can be prevented by adding a salt (some random value concatenated
with the password) which is stored alongside the password file. This doesn’t make it more
or less difficult to break a single password because the number of password bits still remain
the same (instead of guessing h(<password>) they now guess h(salt + <password>) but salt is
known).

2.18.7 HTTP Response Splitting

HTTP response splitting is a vulnerability that takes advantage of the fact that HTTP naively
parses requests to split it into a header and a body just by looking for a carriage return and
line feed sequence. If the string English is user input, an attacker can send a request with
the language set to English
r
n ... and the server will interpret this as a header and a body. The attacker can then send a
response that will be interpreted by the browser as a header and a body. This can be used to
inject malicious code into the response.

Comment This is something that has largely been dealt with but sometimes still pops up in legacy or
embedded systems.

2.18.8 Cross-Site Request Forgery (CSRF)

Comment This one is still relevant and is a common attack vector.

A vulnerability that allows unauthorized commands to be executed on a web application
from an user. Tricks users into visiting a website that contains a link to a site that the user may
have visited previously. If the user’s browser contains a valid authenticated cookie for the site,
the attacker can issue authenticated requests to the site.

For example,

1 <img src="http://bank.com/transfer?amount=1000&to=attacker"

This would simulate a user visiting the bank’s website and transferring money to the
attacker via the request. There’s technically nothing wrong with it because the request is
coming from the user’s browser. But the user didn’t intend to do this. It also doesn’t violate
the same origin policy because it doesn’t involve requesting for cookie contents.

This is very difficult to fix on the client side and largely would have to be kept in mind by
the application developer52 52This is why banks tend to have layers

of confirmation screens and short au-
thentication lifetimes.

.
Defenses against CSRF:

• Limiting the lifetime of authentication cookies

• Checking HTTP referrer headers (make sure that the referrer is the URL of the previous
webpage from which a link was followed) (but this can be possibly forged, depending
on the browser)

• Requiring secret token in the GET and POST parameters

• Requiring authentication in GET and POST parameters, not in cookies only
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2.18.9 Multi-Factor Authentication (MFA)

• Authentication, in general, uses a piece of information about the user (authentication
factor) to verify that the user is who they say they are. This is usually something that
they know, they have, they are, or can do.

• Multi-factor authentication is a method of authentication that requires more than one
authentication factor to be used to verify the user.

– For example: smart credit cards contain a secure chip that can be used to authen-
ticate the user that contains keys and performs cryptographic operations, usually
having the card sign a randomly generated string

– As discussed in the labs, the user can also use a one-time password (OTP) that is
generated by a hardware token or a mobile app

– Biometric systems:
∗ Moving from binary to probabilistic security model (false rejection/false ac-
ceptance)

∗ Layered approaches and good management of biometric templates are neces-
sary

2.18.10 Federated Identity

A single service maintains a user’s username and passwords. Handles new registrations, pass-
word resets, etc. Multiple services rely on the identity provider to help authenticate users that
interact with the services. UTORid is an example.

A case study is the Kerberos system, which is a federated identity system that is used by
many organizations to authenticate users via a trusted third party and Needham-Schroeder.
The trusted third party uses an authentication server and a ticket-granting server.

There are three layers to it:

1. Authentication

2. Authorization

3. Service
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The authentication layer creates a secure token given to the user that the user can then
use to prove that they are why they claim they are. Next, they go through the authorization
server using it’s token to get a service token. This authorization service has no idea how to
authenticate but it can know if the key is valid. This token is then used to access the service,
i.e. printing. The service can then use the ticket to grant access to whatever the ticket is for.

Comment A nice part of this kind of layered system is that it offers flexibility and agility in design and
maintenance. This is especially important for a changing product.

Definition 32 Single-sign-on (SSO): enables a user to log in once and access multiple services without
having to log in again. Generally implemented through some sort of federated identity
protocol.

Typical web authentication flow:

1. User authenticates to the identity service provider

2. Service provider sends the user an unforgeable token

3. User presents token to service they want to access which it accepts n lieu of authenti-
cating the user

4. The service now has a certified identity for the user
Example OAuth: An open specification developed by google and facebook for an authorization pro-

tocol that is often used as an authentication protocol.
There are three parties involved:

• Resource Owner: the user. A way to think of this is that you are the profile owner.

• Authorization Server: the service that the user wants to access

• Client: the service that the user wants to access

The service that we want to access (client) will send a request to us (resource owner) when
we want to log in. The user will then use our information and that client request against
the authorization server in order to obtain an auth code. The same person who logged in
also is the one who hands it back to the client, who uses the authorization server in order
to validate things and access the requested information.
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Federated identity takes a lot of the security burden off the developer which has significant
productivity benefits. Note: understand difference

and relationship between
authorization and authenti-
cation. Revocation is ok for
authorization but is tricky for
authentication

Subsection 2.19

Security Modes and Covert Channels

2.19.1 Security Policies

Security policies govern how a system handles information. They are generally used by the
military/government/etc. and are based on security models that are usually fairly intuitive but
can also stand up to proofs for security. They are generally implemented as MAC53 53Mandatory Access Controlpolicies.

• Confidentiality Policies: defines who is allowed access information or resources (protect
information from leaking)

• Integrity Policies: prevents corruption of information

Definition 33 Bell-La Padula (BLP) Model: a model designed to build confidentiality policies. The idea
behind BLP models is that it defines certain levels of data, i.e. unclassified, classified, secret,
top-secret, and so forth. And each level will be able a file up to a certain level but cannot
write down to another level.

BLP does not preserve any integrity, however.

Definition 34 Biba Integrity Model: the mathematical dual of the BLP model, designed to build integrity
policies. Consider a research experiment that flows from lab measurements -> report -> peer
review -> media -> twitter. Then we allow an write-down policy to be implemented; there’s
no danger to the data if we write a twitter post using the media, but there is definitely danger
to the data’s integrity if we use a twitter post to generate lab measurement data.

2.19.2 Side channels and Covert Channels

Definition 35 A side-channel allows for unintentional information flow in or out of the system, e.g. user
data or cryptographic keys. Channels can come in many unexpected forms, i.e. R/F leakage,
event timing, etc. While some side channels can be remotely exploited, many more can be
exploited locally.

Timing analysis is one side channel that relies on the fact that algorithms can somethings
leak important security information. For example, standard strcmp implementations will
short circuit at the first character that is not equal – so the runtime of the method is pro-
portionate to the number of matching characters. So by feeding in a ton of test strings and
carefully inspecting the timing we may be able to discover how close we are to the correct
string.
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Modern cryptographic libraries have fallen victim to timing attacks before. A general
recommendation is to add some randomness to the runtime of any cryptographic routine with
runtime related to the input.

Figure 53. Radio emissions from scan patterns of old CRTmonitors can be used to reconstruct the image.
This is still possible with modern LCD screens, albeit weaker.

A similar principle applies to input devices such as keyboards and mice. Wireless key-
boards often transmit the input text in plaintext, and wired keyboards need some sort of de-
coding circuit that will still nonetheless leak the data.

Power analysis is another side channel that can be used to extract information from a
system. For example many safes with electronic locks will want to avoid putting their power
source in the safe (so that you don’t end up losing access if the batteries run out). This, however,
leaves the power consumption of the circuit open for the attacker to observe.
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Figure 54. A voltmeter can be put between the battery and the circuit tomeasure the power consumption.

Figure 55. In this case we have physical access to the device. So we can connect a probe to the memory
chip and monitor the signal with an oscilloscope. The top line is the clock signal and the bottom is the
power

A clear correlation appears between the power consumption and the clock signal. EEP-
ROMs are quite power hungry, especially when pushing out an 1.
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Figure 56. As it turns out whenever we enter any combination the EEPROM will wake up the chip and
read out the actual stored password.

Current research in the field of power analysis includes building chips that inherently
have random noise in their power consumption, applying machine learning to better filter out
noise, and running chips with inconsistent clock signals and voltage dithering.

Definition 36 Covert channels are much the same as side channels, but they are intentionally designed to
leak information. There are some pretty crazy ones e.g. setting the speed of a fan, or flipping
the Ethernet settings on a raspberry pi to send off a radio signal, etc. Covert channels are
generally very hard to detect, but there are ways to prevent creating the opportunity for
them to exist in the first place. Since convert channels exist when the actions of one process
affect the actions of another process in a predictable way (even though there is no explicit
communication), we aim to design systems with the non-interference property, i.e. any
sequence of inputs to a process will produce the same output regardless of inputs to another
process54 54This is almost impossible to achieve

in practice
. For example a machine should respond the same way to an user with low or high

clearance.

Note that not all covert channels are useful. If you can only get one bit per hour out of a
covert channel, it may not be of any practical use to an attacker.

Subsection 2.20

Network Security
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Figure 57. Some key protocols of the internet. 1. ARP is used to map IP addresses to MAC addresses
(which is an unique address for each network card) and is at the lowest level. 2. ICMP is a routing
protocol, 3. TCP/IP routes packets, and so forth.

Figure 58. Each layer of the network stack adds some header or footer to the packet, but they don’t
apply any security protocols to it; they just directly trust it.

Many of our internet protocols were designed assuming that the network was a trusted envi-
ronment. For example smtp55 55for emailjust sends everything in plaintext.

2.20.1 ARP spoofing

ARP is used to map IP addresses to MAC addresses such that IP packets can be sent to the link
layer. Packets are set to the next hop using MAC addresses. ARP uses broadcasting: if a host
wants to send a packet to address A, then it will perform an ARP broadcast to determine which
devices owns IP address A. All hosts ignore the broadcast except for A, which will respondwith
its MAC address. Then all packets sent to A are sent using the provided MAC address.

If an attacker has full access to a host, then spoofing ARP requests is trivial. The attacker
can make all traffic redirect to itself by responding to all ARP broadcasts (every machine starts
to think that the hacked machine owns every IP address). 56 56ARP broadcasts are never forwarded

outside of a subnet so the attacker must
control a machine on a subnet

Furthermore, on basically every
single system the networking stack will opportunistically cache ARP replies and poison57 57Put incorrect entries intheir
own cache. Then future transmissions from the victim will be routed towards the attacker58 58To keep this up, the attacker should

keep track of who used to own the ad-
dress and then forward it onwards after
relabelling to the old MAC address
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2.20.2 ICMP Smurf attack

Figure 59. Smurf Attack

Smurf attacks are a type of reflected attack where we trick a whole host of, well, hosts to all
send ping replies to a victim machine. So the attacker sends a ping stream to an IP broadcast
address with a spoofed return address. In the past UofT’s network was sensitive to this but
(unfortunately?) it is no longer the case. Defenses to this attack include disabling the host
response to ping broadcast, or disabling broadcast forwarding at the router.

2.20.3 TCP/IP Spoofing

Figure 60. TCP Handshake: An attempt is made to make sure that the client is alive

According to the standard the
SYN and ACK packets should
be sent separately but every-
one sends them as one

The TCP handshake uses the initial sequence numbers as a weak authenticator. However, since
it is sent in plaintext, an attacker can forge a packet with the source IP address set to the client’s
address. Forging source IP addresses don’t necessarily allow for the attacker to receive packets
directly, but if the attacker can guess the sequence number then the attacker can connect to
the server as the victim client.
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2.20.4 TCP Reset Attack

A reset packet is sent when a server/client want to terminate their connection. This is abused
by an attacker by falsely sending reset packets59 59Often done by listening over the net-

work to find the TCP sequence numbers
to produce a denial of service attack. Unfor-

tunately defenses are not obvious and may include ignoring bogus reset packets or requiring
multiple packets.

2.20.5 TCP SYN Flood

Comment The high-tech equivalent of running a doorbell and running away.

The attacker sends a lot of connection requests with spoofed IP source addresses. The
victim will allocate resources to handle these requests until some limit is reached, leading to a
denial of service. Defenses include rate limiting, or using a SYN cookie60 60This breaks the TCP handshake pro-

tocol a bit but it provides more defense
against such attacks

.

Low-powered firewalls i.e. in embedded systems may only filter the first syn packets.
Syn-ack cookies can pose a problem for them since our network flow may establish a connec-
tion much further down from the initial syn packet. Many modern communication protocols
do take advantage of syn-ack cookies and break the TCP/IP standard in doing so, so this is
something to watch out for.

2.20.6 BGP: Border-Gateway Protocol

The internet is broken up into autonomous systems (AS) that are independently managed and
connect to each other via gateways61 61I.e. an ISP. Gateways communicate via BGP to update routing in-
formation to handle scenarios such as a router going down. This is performed in a peer-to-peer
manner.
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Routers trust each other and don’t authenticate advertised routes or BGP packets. There-
fore BGP can be compromised in a manner similar to ARP attacks, i.e.if a malicious actor gains
access to a network it can advertise "good" routes that actually route to the attacker’s gateway
instead of the intended ones.

2.20.7 DNS

Definition 37 DNS (Domain Name System) is a hierarchical system for resolving symbolic names to IP
addresses.

In order to avoid making excessive repeated queries DNS responses are cached at name
name servers for some TTL lifetime62 62There is a trade-off between efficiency

(high TTL) and shorter TTL (better load
balancing)

One way to exploit DNS servers is to poison their cache:
updating a DNS server’s cache with bogus mappings
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Figure 61. DNS Cache poisoning

DNS cachemust be inside the network andmust also be able tomake requests from outside
the network as well.

• The attacker fires off a number of requests to the victim nameserver, i.e. where is bank
of steve?

• The attacker then floods a number of forged answers to the victim nameserver (trying
out a bunch of query ids (QIDs)) with the forged answer that the bank of steve is at
their ip address. Since the attacker knows the request timing it can usually win the race
condition

• The victim nameserver cache is now poisoned!



ECE568 Computer Security Network Security 105

Figure 62. A more robust attack to poison an entire domain

The way that this works is that we target one message earlier in the DNS protocol. A new
random name is generated and then a forged request is sent to the victim nameserver to that
random name. This forces the victim nameserver to make a request to resolve it (the victim
needs to know what nameserver to query in order to resolve these forged requests) since it
has never seen it before. So now now the attacker may likewise forge a response to the victim
nameserver and poison the cache by telling the victim nameserver the address for their fake
nameserver. Once this happens then the victim nameserver will always send requests to the
attacker’s nameserver, which can then forge responses to the victim nameserver, steal data,
etc.

Another DNS attack is the DNS Rebinding Attack. Whereas the previous attacks replace
the mapping for the victim’s domain with the attacker’s IP, this attack replaces the mapping
for the victim’s domain with the attacker’s IP.

Comment I took these notes at 2023-03-30 03:34AM, so they are especially incoherent

Attacker gets you to visit a webpage Click on the link Computer wants to connect to
attacker.com, and runs a DNS query to see where it is This will give the legitimate attack
of attacker.com and then retrieves the webpage. However the provided TTL from the name
server is set to a really low value. A script in the webpage first pauses for a moment and then
retrieves some more stuff from attacker.com. Since the TTL was so short, the victim will now
make another DNS query. The second time it gives an IP address that corresponds to a machine
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on the local network, thereby rebinding attacker.com to a machine in the internal network.
After another small timeout the script will now make a third request to attacker.com, which
will go to the original address. From the standpoint of the victim it will look as if there are no
problems: attacker.com is valid and the script is working as intended: the same origin policy
is not being violated. So the attacker can pull information from outside, push information out,
pull information from inside, and so forth – all without violating the same origin policy.

Figure 63. Summary of steps

The reason why the same ori-
gin policy operates on the do-
main name and not the IP ad-
dress is due to load balancing
or other reasons

Defenses to this attack include

• PinningDNS/IPmappings to the value in the first DNS response. Manymodern browsers
do this, despite breaking DNS protocol.

• Block resolution of external names into local IP addresses at a local DNS server (this
would make sense, anyways)

2.20.8 DDoS

Definition 38 Denial of Service (DoS) is an attack that prevents a service from being used by legitimate
users. Usually the attacker aims to consume as many resources as possible, targeting either
bandwidth, memory, number of connections, etc. Since attacks like this generally require
flooding the server with requests of some forth, the attacker needs a lot more bandwidth
than the victim.
Distributed Denial of Service (DDoS) is a DoS attack that is carried out by multiple attack-
ers, usually by an attacker with a large number of compromised machines that they use to
simultaneously attack a single target

2.20.9 Common Defenses

• Cryptographic protocols can be used to defend against a lot of the attacks by dealing
with spoofing and injected data (but not DoS)

– ssl, ssh, etc.
– These generally work at the application layer, but what about the network layer?
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Definition 39 IPSec: An example of a cryptographic protocol that works at the network layer.
Provides confidentiality, integrity, replay protection, and authentication for IP packets via
Authenticated Headers (AH) and Encapsulating Security Payload (ESP)63 63AH and ESP can be turned on/off de-

pending on what you need

It also supports a number of modes such that it can be used even when all routers
aren’t IPSec capable. Transport mode is used when endpoint routers support IPSec (en-
crypts/authenticates the packet payload), and Tunnel mode is used when endpoint routers
don’t support IPSec but the endpoint gateways do. This encrypts/authenticates the header
and payload and then encapsulated it in another packet

As a developer we can choose between IPSec and SSL dependong on our needs. SSL offers
better access control and can be used for a wider variety of applications64 64Andmore security since security keys

etc negotiated per-connection
, but IPSec is more

efficient and has lower overhead (doesn’t need to do SSL handshakes, etc).

Subsection 2.21

Malware

Malware includes is a large umbrella that overs malicious software. Types include viruses and
worms65. rootkits66, backdoors67 and so forth. 65 replication programs

66 hide or obscure fact that a system has
been compromised

67 Method for bypassing security sys-
tems

Whereas viruses and worms replicate automatically, viruses are typically require a host
program to infect and is slow-spreading and worms are stand-alone and spread automatically
without human intervention (and so spread quite a lot faster).

2.21.1 Viruses

Viruses work by inserting their own instructions into existing programs, and then when the
program is run, the virus is run as well. On execution the virus may propagate to other pro-
grams. Early viruses often infected the disk boot sector: a boost sector virus would load in
memory when the disk is inserted and copy itself to other disks on the system (especially
prevalent in the days of floppy disks).

Viruses inserted at the beginning of the program or at the end of the program. In either
case they must overwrite some sector of the program and then apply some fixup code to repli-
cate the code that it overwrote. Viruses at the beginning of the program are limited in length
since they can’t overwrite too much of the program, while ones at the end are unlimited in
length as long as they add a GOTO to the beginning of the program.
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Figure 64. A virus may not want to repeatedly infect a same program, so it will often insert a signature

Virus scanners work by looking for signatures, which are strings of bits corresponding to
instructions found in known viruses. A malware protection company can find viruses by using
a honeypot farm68 68A network of computers that are set

up to look like a real system, but are ac-
tually isolated and monitored. The pur-
pose is to attract attackers so that they
can be observed and their attacks can
be analyzed.

, with which they scan for signatures. Signatures should be long enough
that that legitimate code is not mistakenly identified, but not too long such that scanners miss
variants of viruses.

Comment The EICAR Anti-Virus test string is an executable that may be encoded in entirely typeable
characters that basically all antivirus companies have in their signature lists and can be used
to validate whether or not if an antivirus software works or not.

Polymorphic viruses are viruses that change their signature to avoid detection. This is
done by embedding a small decryption engine in the virus (usually a simple encryption scheme
i.e. XOR) and having the virus logic live in an encrypted payload. The encryption key is gen-
erated randomly whenever the virus is transmitted, so the virus will have a different signature
every time.

Advanced virus scanners can detect polymorphic viruses by looking for suspect files and
running them inside an emulator. Then when it is run the virus will have to decrypt itself and
expose it’s signature, which the virus scanner may now find.

Metamorphic viruses are yetmore sophisticated: they change their code on every infection
by rewriting themselves. Typical code changes included: changing register allocations, using
equivalent instruction sequences, changing order of sections of code, and so forth. Detecting
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them gets more difficult: anti-viruses may have to run the code in an emulator and then look
for sequences of executed instructions, or scan for markers in infected files, and so forth.

2.21.2 Worms

Worms spread automatically by identifying and exploiting vulnerabilities in hosts69 69For example the slammer worm in-
fected 90% of vulnerable hosts world-
wide in under 10 minutes

.

Example TheMorris Worm is the first worm and was related in 1988. It infected 6000 machines and
caused 10-100M in damages.

• Included server and a vector/bootstrap program

• Server looked for vulnerable remote target machines and tried to exploit a vulnerabil-
ity

• Created a shell on the target, uploaded target, compiled on target, and ran the vector

• The vector downloaded the rest of the worm from the server and started the server
on the newly infected host

This exploited four vulnerabilities

1. finger program was vulnerable to buffer overflow

2. sendmail on many systems had be compiled with DEBUG. By connecting to the
sendmail port and sending "DEBUG", the attacker received a root shell

3. Worm tried popular passwords on the target machine, the hashes for which were
easily findable in /etc/passwd

4. The worm would try to connect to posts in /etc/hosts.equiv, which were ma-
chines the users can log into without a password

Techniques it used to hide itself included

• limit inflecting already-infected machines

• Deleted program files after they were loaded in memory, obscured program argu-
ments, killed unneeded parent processes, etc

Modern worms aim to increase spreading speeds largely by using more advanced tech-
niques for finding other vulnerable hosts (pre-seed worms with potentially vulnerable hosts),
trying to infect local hosts first, and using UDP instead of TCP
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Figure 65. Worms tend to spread in a logistic fashion

Example Stuxnet a worm from around 2009 that targeted uranium-enrichment centrifuges at Natanz
plat in Iran that introduced the notion of zero-day exploits. In particular stuxnet took ad-
vantage of at least four zero-day exploits:

1. Windows printer sharing

2. Windows keyboard driver

3. STEP7 PLC Controller

4. LNK Exploit

Windows uses a signing mechanism to validate device driver and OS files. Key files are
signed by their author using a public-key signature. The files used by stuxnet were signed
using stolen certificates from two major hardware manufacturers (JMicron and RealTek)70 70Which happened to have adjacent

headquarters in TaiwanIt was controlled and monitored by a pair of websites (which happened to be mypremierfut-
bol.com and todaysfutbol.com) which received reports of infected machines and distributed
updated commands/payload/etc.

Figure 66. Infected hosts could be traced back to five primary infections related to Iranian nuclear
production
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PLCs are small programmable controllers that are often used in industrial settings. They
tend to have poor security becuase they are often assumed to be isolated on an internal
network.
It is also of note that stuxnet was written to target one specific network: though it infected
thousands of industrial control systems around the world, it would only deploy if it had
exactly 33 frequency counters at 1064 Hz – which was the exact layout of the Iranian pro-
duction facility.
Stuxnet exploited a vulnerability in the Siemens STEP7 PLC controller that allowed it to up-
load and execute arbitrary code to rapidly speed up and slow down the centrifuges, and was
able to reach the PLC controllers by infecting the various windowsmachines on the network
via the drivers & windows printer sharing. It also disabled monitoring alarms and modified
status reports of the centrifuges to make it appear as if they were operating normally.

Definition 40 Zero-day exploit: An previously unreported and exploitable vulnerability in a system.
These can be quite valuable depending on their nature, and are often sold on the black
market. Very few pieces of malware use zero-day exploits (on the order of 0̃.0001%)

Worms defenses include:

• Update your software

• Use a firewall

• Disable unnecessary services

Areas of research include early bird71: detecting worms before they spread via packet 71 UC San Diego
sniffing, and Shields72 72Microsoft Research: recognizing that vulnerabilities often lie in obscure paths, so blocking
them if applicable.

2.21.3 More

Definition 41 Botnets are a collection of compromised machines that run under a common command-
and-control infrastructure. They are often used for DoS attacks, spamming, spyware, and
so forth.

Definition 42 Rootkits is any software designed to hide the fact that a system has been compromised,
usually by subverting the mechanisms that report on processes, files, etc. Rootkits may be
memory-resident, or may be installed as a kernel module, etc, and can also live in user or
kernel modes. User mode rootkits intercept library or system calls at the user level and
modifies returned results, and kernel mode rootkits do the same but in the kernel.

In 2005 Sony BMG included copy protection measures on 102 albums. So they created
a rootkit in the CDs that would install automatically and interfere with the normal way that
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OSes play CDs. Ironically Sony’s rootkit included a number of open source libraries that vi-
olated their licenses, contained more vulnerabilities that were exploitable by other malware
and viruses, and so forth. And then the rootkit uninstaller they provided opened more secu-
rity holes!

Subsection 2.22

Content-type attacks

JPEG files are data-only but can cause a lot of damage depending on the parser. Multiple
vulnerabilities have appeared over the years in libraries that parse JPEGs. For example: com-
pression/zip/image bombs that are tiny files that become huge when uncompressed, and can
cause a denial of service by filling up the disk.

Many popular document types are extremely complex e.g. the PDFv6 spec is 1310 pages.
A content-type attack exploits vulnerability in the parser of a document type to cause a denial
of service or execute arbitrary code, e.g. how PDFs may include javascript.

PDF files have been the most-targeted document type for content-type attacks, and have
been the subject of many vulnerabilities. Also has the most proof-of-contacts.

PDF files start with a lien describing the PDF language version. The remainder of the file
describes the tree structure of the document

Data is uncompressed by default, but often compressed to obfuscate the content. Checking
PDF files for malicious code is not easy.
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Figure 67. PDF files can contain malicious javascript and be automatically called when the document
opens

Figure 68. The following are equivalent

One solution is to just disable JavaScript, but that breaks a number of PDF forms (and JS
may not be the only attack vector: parsing engines are also vulnerable) For example, CVE-2008-
2992 allowed an attacker to execute arbitrary code via a printf implementation vulnerability.

Figure 69. Buffer overflow in printf that allows for arbitrary code execution. TLDR: stick a ton of NOP
into the heap and then buffer-overflow with util.printf("%45000f", <somebignum>) so that we end up in
some part of the heap. Then there’s a good chance we hit the nop sled and get to our shellcode

Turning off library features break standards compliance, and so is not always a good so-
lution. Also, virus scanners are reactive and not proactive. A more generalized approach is
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needed, i.e those we traditionally used for operating systems. For example adobe reader for
windows ships with DEP (non-executable stack/heap) on by default.

2.22.1 Future Trends

Dorifel virus (late 2012). Downloaded onto many systems already infected with another piece
of malware designed to steal banking credentials. Launches on startup and takes some steps
to avoid detection e.g. self-termination if it sees taskmgr.exe. Uses a right-to-left unicode
vulnerability to hide itself from casual inspection

Figure 70. Would create files that were actually exes but were rendered as benign files due to the RLO
character

Another Unicode vulnerabil-
ity is registering domains us-
ing lookalike Unicode charac-
ters

Subsection 2.23

Cloud Computing

Figure 71. Cloud computing can provide many layers of abstraction and services, and there are security
implications for each one of them. In this course we will focus on the IaaS layer.
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Figure 72. Users typically interact with the blue boxes here, and the yellow ones are typically abstracted
away by the cloud provider.

The security industry is still defining best security practice for cloud computing and there are
a lot of research on overcoming the security implications of shared cloud computing. Clients
trust cloud service providers (CSP) to provide confidentiality, integrity, and availability, and
CSPs trust clients to not behave badly. However CSPs also need to ensure malicious clients
don’t interfere with or exploit one another.

• Confidentiality: our data now physically lives on the CSP’s premises. Monitoring access
patterns and VM usage patterns can leak information, and so can side channel leakage
(i.e. recovering data from previously running VMs).

• Integrity: what if a client’s data gets changed or is compromised? Race conditions, ex-
ploiting data caching, etc can be an issue.

• Availability: geolocation of data, uptime of VMs, and so forth.

Some things of consideration are

• Hypervisors are low-level software components that allow hardware be virtualised and
partitioned into Vms, i.e. HyperV, VMWare, Proxmox, etc. If hackers can get into a
hypervisor then they can get root access to all VMs on that hypervisor. One way of
securing hypervisors is TPM (Trust Platform Module) which is a secure co-processor
which signs a copy of the software at boot to verify the integrity of the code that is
running.

• Firewalls: Customer-controlled firewalls restrict traffic to/from their VMs. CSPs imple-
ment firewalls outside VMs so compromised VMs don’t gain ability to modify firewall
settings.

• Cryptography at rest. There is no agreed-upon best practice. Amazon has encrypted ob-
ject storage and plaintext block storage, OpenStack encrypts and signs block storage but
not objects, and Joyent does not encrypt, claiming that customers should be responsible
for their own encryption since CSPs cannot be trusted with encryption.

• Networking: IPs can be rotated among CSP VMs, so a customer who causes an IP to be
blacklisted can cause the next customer who uses it to be adversely affected. Spoofed
packages should be monitored and CSPs should block usage of their services for things
like spam.
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One of the concerns customers face when doing private infrastructure or public cloud is
the loss of confidentiality of their data and computations. Shared caches, storage channels, and
covert channels can be concerns.

One exploit is a cache timing exploit: a side channel attack on shared hardware. An at-
tacker who can run code on the same processor as a victim can use the shared cache as a timing
channel to infer information about data being used in computation by the victim.

Definition 43 Cache timing attack:
Prime phase: attacker fills shared cache with their data, evicting all the victim’s data from
the cache. The victim is then allowed to execute their code, which uses the shared cache.
Loads by victim evicts attacker data from the cache.
Probe phase: Attacker reads data from the cache and times how each read takes. The accesses
that take longer are because of cache misses and go to memory, so the attacker can infer
which cache lines the victim accessed. It has been experimentally shown that this leaks
enough information to recover a victim’s AES key.
Defenses include allocating memory such that there is no overlap in cache lines used by
customers73 73which is very inefficient, or allocating memory such that cache lines that contain sensitive information
cannot be evicted from the cache and do not affect the timing of the attacker’s memory
accesses.

Covert channels can also be used: an attacker who compromises a VM can leak informa-
tion out through methods such as caches (2-10 bit per second74 74Xu et al, 2011) or the memory bus at rates up
to 100bps75 75Wu et al, 2012.

A common goal of CSPs is to be able to prove with high probability that they have main-
tained the integrity, availability, and durability of customer data. This is often done via a prob-
abilistic algorithm, where customers make specially constructed queries on their data data and
if the queries are answered correctly by the CSP then it proves with high probability that the
data security has been maintained.

Definition 44 Proof of retrieval
Customer encrypts a file and randomly embeds a number of check-blocks (sentinels). En-
cryption makes the sentinels indistinguishable from other file blocks. Customer challenges
CSP by asking for a random subset of the sentinel blocks. If the CSP has modified or deleted
the file, then it will also have suppressed a number of sentinels. Checksums are used to
detect the possibility of small changes having been made. Another case where this

could be useful is sprinkling
fake customer data into your
database and if those emails
end up getting activity or turn
up somewhere then it means
that there has probably been a
data leak or some sort at some
point

Definition 45 Provable data possession: the client pre-computes tags for each block of a file and then
stores the file with a server. Tags are computed using homomorphic encryption, so tags
computed for multiple or arbitrary file blocks can be combined into a single value. So this
way the CSP can still do some cryptographic tests for you without having to know the key.

Subsection 2.24

Computer Security learned from Physical Security

Locks present an interesting case study in security design for a goal that has remained un-
changed for almost 4000 years: do not let the bolt move until someone presents a valid token.
Also, recall that much of what makes security hard has to do with negative goals: i.e. thought
it may be easy to make a lock that opens when Alice puts her key in, it shouldn’t allow Bob
(or anyone else) to open the door, or to copy a key, etc.
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Figure 73. Prof. Courtney Gibson has a collection of historic locks going back a couple thousand years??
Like who is this person

Physical security differs from computer security is that upgrades are hard: whereas it is
easy to upgrade software, hardware upgrades involve retooling production lines, replacing
whole locks, and so forth. And consequences of exploits can be huge: property or lives. This
lead to a culture of secrecy: manufactures and locksmiths protect their secrets which leads to
lessons of past design failures not being well known, which is very different from the cyber-
security culture where disclosure is the norm. It can be hard to educate con-

sumers about risks if the tech-
nology isn’t understood.

Figure 74. When we started ECE568 there was no expectation of burning our notes after we were done
with it
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Figure 75. There is a culture clash between digital and physical security, but IoT devices straddle the
difference
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Figure 76. Keys are secure in theory, but it is not cost-effective to manufacture every part to perfect
tolerances. For example, we can isolate key pins one at a time, which drastically reduces the number of
combinations that need to be tried.

Figure 77. Picking a lock: first, place some tension on the lock
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Figure 78. Next, nudge the pins up one by one up into the shear line. Usually there will be just one
or two that are sticking, so we can put those up to the correct height first, and so forth until the lock is
unlocked.

Figure 79. Slightlymoremodern picking toowhich simulates a key as well as gives offsets for the notches
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Figure 80. Medeco locks were designed to combat this issue by requiring that the pins be rotated to the
correct position as well.
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Figure 81. The groove extending all the way to the end made these locks a lot more pickable

Figure 82. Some locks you can just push all the way up and unlock. Kind of like a buffer over-
flow.Solutions to this have been created i.e. having a canary pin of sorts which when overlifted jams
the lock until the correct key is inserted. Or some other locks where if the wrong key is it shoots you.

Keys make for really poor passwords and are easily replayed. Attempts to resolve this
include having really bizarre key blanks, patenting the key blanks, or making it illegal. Most of the US railway infras-

tructure is protected by only
15 keys which you can just
buy online lol

What are ways to prevent non-original keys? One includes introducing parts of the key
that must move in certain ways (like nonces).
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Figure 83. Articulated keys

Some side channel attacks:

• A problem with combination locks (especially in safes) were that they tended to vibrate
themselves open since their wheels were not balanced.

• Impressioning: inserting an incorrect key and reading marks left on the key and filing
away until we get a valid key.

• Privilege Escalation: most businesses have a master key system. This is usually imple-
mented by adding another set of breaks for the master key.

If we start with a non-master key and procedurally edit each notch until it opens the
lock again we can iterate our way to a master key.

Systems design is important.
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Figure 84. Layered security is a good idea
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Figure 85. These stamps are used to make sure that the lock could not be opened without puncturing
the paper first. And these were hard to duplicate since in the 1800s people didn’t have printers at home.

Figure 86. Modern safes have sensors that detect attacks and will lock themselves down.

The current trend is towards smart keys that perform a cryptographic handshake along-
side a mechanical lock. The highest security assurance in physical locks come from designs
that test the entire key (user token) as one single, atomic operation: This prevents attack-
ers from breaking down the problem and attacking individual components76 76Some key designs require the entire

key to be literally put into the lock and
then some motions to cover up the key
hole (like putting a toy into a kinder
surprise and then closing it)

This is equally
applicable to digital systems.

In summary,

• Good security does not rely on the secrecy of your algorithm or implementation

• Whenever possible, have the following:
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– Multiple factors
– Liveness
– Layered security

• Combine authentications into one single test (atomic operation)

Section 3

ECE353 Operating Systems

Comment Examples and some figures taken from Prof. Jon Eyolfson’s ECE353 slides and notes
(https://eyolfson.com).

Subsection 3.1

Kernel Mode

3.1.1 ISAs and Permissions

There are a number of ISAs in use today; x86 (amd64), aarch64 (arm64), and risc-v are common
ones. For purposes of this course we will study largely arm systems but will touch on the other
two as well.

Figure 87. x86 Instruction access rings. Each ring can access instructions in its outer rings.

The kernel runs in, well, Kernel mode. System calls offer an interface between user and
kernel mode77 77Linux has 451 total syscalls.

Note: API (application
programming interface),
ABI (Application Binary
Interface). API abstracts
communication interface (i.e.
two ints), ABI is how to layout
data, i.e. calling convention

The system call ABI for x86 is as follows:
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This ABI has some limitations; i.e. all arguments must be a register in size and so forth,
which we generally circumvent by using pointers.

For example, the write syscall can look like:

1 ssize_t write(int fd, const void* buf, size_t count);
2 // writes bytes to a file descriptior

3.1.2 ELF (Executable and Linkable Format)

• Aways starts with 4 bytes: 0x7F, ’E’, ’L’, ’F’

• Followed byte for 32 or 64 bit architecture

• Followed by 1 byte for endianness

Most file formats have dif-
ferent starting signatures or
magic numbers

readelf can be used to read ELF file headers.
For example, readelf -a $(which cat) produces (output truncated)

1 ELF Header:
2 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
3 Class: ELF64
4 Data: 2's complement, little endian
5 Version: 1 (current)
6 OS/ABI: UNIX - System V
7 ABI Version: 0
8 Type: DYN (Position-Independent

Executable file)↪→

9 Machine: Advanced Micro Devices X86-64
10 Version: 0x1
11 Entry point address: 0x32e0
12 Start of program headers: 64 (bytes into file)
13 Start of section headers: 33152 (bytes into file)
14 Flags: 0x0
15 Size of this header: 64 (bytes)
16 Size of program headers: 56 (bytes)
17 Number of program headers: 13
18 Size of section headers: 64 (bytes)
19 Number of section headers: 26
20 Section header string table index: 25

This output is followed by in-
formation about the program
and section headers

strace can be used to trace systemcalls. For example let’s look at the 168-byte hello-
world example
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1 0x7F 0x45 0x4C 0x46 0x02 0x01 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00↪→

2 0x02 0x00 0xB7 0x00 0x01 0x00 0x00 0x00 0x78 0x00 0x01 0x00 0x00 0x00
0x00 0x00↪→

3 0x40 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00↪→

4 0x00 0x00 0x00 0x00 0x40 0x00 0x38 0x00 0x01 0x00 0x40 0x00 0x00 0x00
0x00 0x00↪→

5 0x01 0x00 0x00 0x00 0x05 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00↪→

6 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00
0x00 0x00↪→

7 0xA8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xA8 0x00 0x00 0x00 0x00 0x00
0x00 0x00↪→

8 0x00 0x10 0x00 0x00 0x00 0x00 0x00 0x00 0x08 0x08 0x80 0xD2 0x20 0x00
0x80 0xD2↪→

9 0x81 0x13 0x80 0xD2 0x21 0x00 0xA0 0xF2 0x82 0x01 0x80 0xD2 0x01 0x00
0x00 0xD4↪→

10 0xC8 0x0B 0x80 0xD2 0x00 0x00 0x80 0xD2 0x01 0x00 0x00 0xD4 0x48 0x65
0x6C 0x6C↪→

11 0x6F 0x20 0x77 0x6F 0x72 0x6C 0x64 0x0A

Listing 2: Note: This is for arm cpus

If we run this then we see that the program makes a write syscall as well as a
exit_group

1 execve (" ./ hello_world " , [ " ./ hello_world " ] , 0 x7ffd0489de40
/* 46 vars */ ) = 0↪→

2 write (1 , " Hello world \ n " , 12) = 12
3 exit_group (0) = ?
4 +++ exited with 0 +++

Note that these strings are not null-terminated (null-termination is just a c thing) because
we don’t want to be unable to write strings with the null character to it.

Figure 88. A c hello world would load the stdlib before printing...
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3.1.3 Kernel

The kernel can be thought of as a long-running program with a ton of library code which
executes on-demand. Monolithic kernels run all OS services in kernel mode, but micro kernels
run the minimum amount of servers in kernel mode. Syscalls are slow so it can be useful to
put things in the kernel space to make it faster. But there are security reasons against putting
everything in kernel mode.

3.1.4 Processes & Syscalls

A process is like a combination of all the virtual resources; a "virtual GPU" (if applicable),
memory (addr space), I/O, etc. The unique part of a struct is the PCB (Process Control Block)
which contains all of the execution information. In Linux this is the task_struct which
contains information about the process state, CPU registers, scheduling information, and so
forth.

Figure 89. A possible process state diagram

These state changes are managed by the Process and OS78 78I thinkso that the OS scheduler can
do its job. An example of where some of these states can be useful would be to free up CPU
time while a process is in the Blocked state while waiting for IO. Process can either manage
themselves (cooperative multitasking) or have the OS manage it (true multitasking). Most
systems use a combination of the two, but it’s important to note that cooperative multitasking
is not true multitasking.

Process state can be read in
/proc for linux systems.

Context switching (saving state when switching between processes) is expensive. Gen-
erally we try to minimize the amount of state that has to be saved (the bare minimum is the
registers). The scheduler decides when to switch. Linux currently uses the CFS79 79completely fair scheduler.

In c most system calls are wrapped to give additional features and to put them more
concretely in the userspace.
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Figure 90. Demonstration of c feature to register functions to call on program exit

1 int main ( int argc , char * argv []) {
2 printf ("I 'm going to become another process \n" );
3 char * exec_argv [] = {" ls " , NULL };
4 char * exec_envp [] = { NULL };
5 int exec_return = execve ("/ usr / bin / ls " , exec_argv ,

exec_envp );↪→

6 if ( exec_return == -1) {
7 exec_return = errno ;
8 perror (" execve failed " );
9 return exec_return ;
10 }
11 printf (" If execve worked , this will never print \n" );
12 return 0;
13 }

Listing 3: Demo of execve turning current program to ls (executes program, wrapper around
exec syscall)
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1 #include <sys/syscall.h>
2 #include <unistd.h>
3
4 int main (){
5 syscall(SYS_exit_group, 0);
6 }
7

Listing 4: An example of using a raw syscall system exit instead of c’s exit()

Subsection 3.2

Fork, Exec, And Processes

• fork creates a new process which is a copy of the current process. Everything is exactly
the same except for the PID in the child and PID in the parent.

– Returns -1 on error, 0 in the child process, and the pid of the child in the parent
process

• exec replaces the current process with a new one

– Returns -1 on error

Process states:

• The CPU is responsible for scheduling processes, so there can be >1 process per core.

• Maintaining the parent-child relationship

– Parent is responsible for the child
– This usually works; the parent can wait for the child to finish. But what if the

parent crashes, etc?
– Zombie: a process that has finished but has not been cleaned up by its parent. This

can be a problem because the process is still using resources. The OS has to keep
a zomibe process until it’s acknowledged. To avoid zombie build-up the OS can
signal the parent process (over IPC) to acknowledge the child. (The parent can
ignore it)

– Orphan: a process that has no parent. This can happen if the parent crashes. The
OS can adopt the orphan and make it a child of the init process which can keep
onto them or kill them as needed.
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1 int main(int argc, char *argv[]) {
2 pid_t pid = fork();
3 if (pid == -1) {
4 int err = errno; perror("fork failed"); return err;
5 }
6 if (pid == 0) {
7 printf("Child parent pid: %d\n", getppid());
8 sleep(2);
9 printf("Child parent pid (after sleep): %d\n", getppid());
10 }
11 else {
12 sleep(1); }
13 return 0; }

Listing 5: orphan example: parent exits before child and init has to clean up

Subsection 3.3

IPC

Reading andwriting files is a form of IPC. For example, a simple process could write everything
it reads, i.e this facsimile of the cat program

Standard file descriptors: 0 =
stdin, 1 = stdout, 2 = stderr1 int main() {

2 char buffer[4096];
3 ssize_t bytes_read;
4 // read (see man 2 read) reads from a file descriptor
5 // can't assume always successful; see from `man errno`
6 // Nearly all of the system calls provide an error number in the

external variable errno, which is defined as: extern int errno.
Refer to man pages for what each errno means.

↪→

↪→

7
8 while ((bytes_read = read(0, buffer, sizeof(buffer))) > 0) {
9 ssize_t bytes_written = write(1, buffer, bytes_read);
10 if (bytes_written == -1) {
11 int err = errno;
12 perror("write");
13 return err;
14 }
15 assert(bytes_read == bytes_written);
16 }
17 if (bytes_read == -1) {
18 int err = errno;
19 perror("read");
20 return err;
21 }
22 assert(bytes_read == 0);
23 return 0;
24 }

Another way of IPC is using signals. Common signals include

• SIGINT (Ctrl-C)
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• SIGKILL (kill -9)

• EOF (Ctrl-D)

A signal pauses (interrupts) your program and then runs the signal handler. Process can
be interrupted at any point in execution, and the process will resume after the signal handler
finishes.

1 void handle_signal(int signum) {
2 printf("Ignoring signal %d\n", signum);
3 }
4
5 void register_signal(int signum)
6 {
7 struct sigaction new_action = {0};
8 sigemptyset(&new_action.sa_mask);
9 new_action.sa_handler = handle_signal;
10 if (sigaction(signum, &new_action, NULL) == -1) {
11 int err = errno;
12 perror("sigaction");
13 exit(err);
14 }
15 }
16

// breaking here
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1
2 int main(int argc, char *argv[])
3 {
4 if (argc > 2) {
5 return EINVAL;
6 }
7
8 if (argc == 2) {
9 close(0);
10 int fd = open(argv[1], O_RDONLY);
11 if (fd == -1) {
12 int err = errno;
13 perror("open");
14 return err;
15 }
16 }
17
18 register_signal(SIGINT);
19 register_signal(SIGTERM);
20
21 char buffer[4096];
22 ssize_t bytes_read;
23 while ((bytes_read = read(0, buffer, sizeof(buffer))) > 0) {
24 ssize_t bytes_written = write(1, buffer, bytes_read);
25 if (bytes_written == -1) {
26 int err = errno;
27 perror("write");
28 return err;
29 }
30 assert(bytes_read == bytes_written);
31 }
32 if (bytes_read == -1) {
33 int err = errno;
34 perror("read");
35 return err;
36 }
37 assert(bytes_read == 0);
38 return 0;
39 }

• register_signal sets a bunch of things such that we can handle the signal i.e. exe-
cute a function when a signal occurs. In this program we register SIGINT and SIGTERM
with the kernel to execute handle_signal.

• This will still fail on ctrl-c because the read system call can error out
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1 ssize_t bytes_read;
2 while ((bytes_read = read(0, buffer, sizeof(buffer))) != 0) {
3 if (bytes_read == -1) {
4 if (errno == EINTR) {
5 continue;
6 }
7 else {
8 break;
9 }
10 }
11 ssize_t bytes_written = write(1, buffer, bytes_read);
12 if (bytes_written == -1) {
13 int err = errno;
14 perror("write");
15 return err;
16 }
17 assert(bytes_read == bytes_written);
18 }
19 if (bytes_read == -1) {
20 int err = errno;
21 perror("read");
22 return err;
23 }
24 assert(bytes_read == 0);
25 return 0;
26 }

• This snippet checks errno. and trys read again. Then the program is able to handle ctrl-c.

• This program can still get killed by kill -9 since it doesn’t handle SIGKILL.

• Let’s say we register SIGKILL with the kernel to execute handle_signal. This
will not work because you aren’t allowed to ignore SIGKILL (-9).

Another thing we’re interested in is to find out when a process is done. This can be polling
on waitpid80 80wait for process termination
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1
2 int main() {
3 pid_t pid = fork();
4 if (pid == -1) {
5 return errno;
6 }
7 if (pid == 0) {
8 sleep(2);
9 }
10 else {
11 pid_t wait_pid = 0;
12 int wstatus;
13
14 unsigned int count = 0;
15 while (wait_pid == 0) {
16 ++count;
17 printf("Calling wait (attempt %u)\n", count);
18 wait_pid = waitpid(pid, &wstatus, WNOHANG);
19 }
20
21 if (wait_pid == -1) {
22 int err = errno;
23 perror("wait_pid");
24 exit(err);
25 }
26 if (WIFEXITED(wstatus)) {
27 printf("Wait returned for an exited process! pid: %d, status:

%d\n", wait_pid, WEXITSTATUS(wstatus));↪→

28 }
29 else {
30 return ECHILD;
31 }
32 }
33 return 0;
34 }

Alternatively, we should use interrupts Note: interrupt handlers run
to completion. But an inter-
rupt handler may occur while
another interrupt handler is
running, so execution must be
passable and state managed
accordingly
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1 void handle_signal(int signum) {
2 if (signum != SIGCHLD) {
3 printf("Ignoring signal %d\n", signum);
4 }
5
6
7 printf("Calling wait\n");
8 int wstatus;
9 pid_t wait_pid = wait_pid = waitpid(-1, &wstatus, WNOHANG);
10 // Here in our interrupt (signal) handler) we check for SIGCHILD and

then waitpid the child if applicable↪→

11 if (wait_pid == -1) {
12 int err = errno;
13 perror("wait_pid");
14 exit(err);
15 }
16 if (WIFEXITED(wstatus)) {
17 printf("Wait returned for an exited process! pid: %d, status:

%d\n", wait_pid, WEXITSTATUS(wstatus));↪→

18 }
19 else {
20 exit(ECHILD);
21 }
22 exit(0);
23 }
24
25
26 void register_signal(int signum) {
27 struct sigaction new_action = {0};
28 sigemptyset(&new_action.sa_mask);
29 new_action.sa_handler = handle_signal;
30 if (sigaction(signum, &new_action, NULL) == -1) {
31 int err = errno;
32 perror("sigaction");
33 exit(err);
34 }
35 }
36
37 int main() {
38 register_signal(SIGCHLD);
39
40 pid_t pid = fork();
41 if (pid == -1) {
42 return errno;
43 }
44 if (pid == 0) {
45 sleep(2);
46 }
47 else {
48 while (true) {
49 printf("Time to go to sleep\n");
50 sleep(9999);
51 }
52 }
53 return 0;
54 }
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On a RISC-5 CPU there are three terms for interrupts:

• Interrupt: by external hardware and handled by kernel

• Exception: triggered by an instruction, kernel handles though process can optionally
handle

• Trap: transfer of control of a trap handler by either an exception or interrupt. Syscall is
a requested trap

Subsection 3.4

Pipe

Definition 461 int pipe(int pipefd[2]);

Returns 0 on success, -1 on failure (and sets errno). Forms a one-way communication chan-
nel with 2 file descriptors; 0 for reading and 1 for writing. The pipe is unidirectional.

Subsection 3.5

Basic Scheduling

• A pre-emptive resource can be taken and used for something else; i.e. CPU. Shared via
scheduling

• A non-pre-emptive resource cannot be taken and used for something else; i.e. I/O. Shared
via alloc/dealloc or queuing. Note that some parallel or distributed systems may allow
you to allocate a CPU

• Dispatcher: responsible for context switching. Scheduler: deciding which processes to
run

• Non-preemptible processes must run until completion, so the scheduler can only make
a decision on termination.

• Pre-emptive allows the OS to run scheduler at will.

• Schedulers seek to minimize waiting time and maximize cpu utilization/throughput –
all while giving each process the same percent of CPU time.

Definition 47 FCFS (First come first served) is a scheduling algorithm that runs the process that arrives
first. Processes are stored in a queue in arrival order. This has the downside of potentially
introducing long wait times if longer tasks arrive before shorter ones.

Definition 48 SJF (Shortest job first): schedule the job with the shorts execution time first. Though it’s
optimal at minimizing average wait times, since we don’t know how long each process takes
it may not be practically optimal. It also has the downside of potentially starving longer jobs.

Definition 49 SRTF (Shortest Remaining Time First): schedule the job (with pre-emptions now) with the
shortest remaining time. This optimizes the average waiting time.
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So far we haven’t considered fairness. We can make a scheduler more fair by using a
round-robin scheduler, which is a pre-emptive scheduler which divides execution time into
quanta and gives processes <quanta> of time while round-robining through them. 81 81How to consider quantum length?

Consider context switching time

Figure 91. RR example with quanta of 3 units. Average number of switches is 7, average waiting time is
8+8+5+7

4 = 7, average response time is 0+1+5+5
4 . Note that ties are handled by favouring new processes.

Round robin performance is dependent on quantum length and job length. Long quan-
tum causes starvation (FCFS), but twoo low and the performance sucks since context switches
introduce overhead. If jobs have similar lengths RR has poor average waiting time

Subsection 3.6

Advanced Scheduling

• Processes can be given a priority. Linux: some integer value -20 -> 19

• Processes may starve if there a lot of higher priority processes. Can be resolved by
dynamically changing priorities i.e. upping priority of a old process

Definition 50 Priority inversion: accidentally changing priority of low priority process to high through
some dependency (i.e. high priority depending on low priority), which effectively flips the
actual task priority.
This is a problem and a common solution for it is priority inheritance, where when a job
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blocks one or more high-priority jobs it ignores the original assessment and executes it’s
critical section82 82The blocking portionat a higher priority level, then returns to its original level.

• Recall: fg, bg, ctrl-z, jobs, and so forth

• Foreground/background processes foreground processes are those that are currently
running and can be interacted with. Background processes are those that are running
in the background and cannot be interacted with (take user input). This is to separate
processes that need good response times nad those that don’t. Formally UNIX background

processes are ones where the
process group ID differs from
its terminal group ID

• One strategy is to create different queues for foreground and background processes, i.e.
round-robin forground and then FCFS for background ... then schedule between the
queues

Scheduling is a complex topic and there are many more algorithms that make an array of
tradeoffs

Subsection 3.7

Symmetric Multiprocessing (SMP)

Definition 51 Symmetric Multiprocessing:

• All CPUS connected to same physical memory

• Each CPU has its own cache

Scheduling approaches:

• Per-CPU schedulers: assign a process to a CPU on creation (i.e. CPU with least pro-
cesses). Easy to implement, no blocking, can cause load imbalance.

• Global scheduler: only one scheduler: adding processes while there are available CPUs.
Can cause blocking, but load balanced (In Linux 2.4)

• These two extremes have downfalls, so we try to make a compromise: keep a global
scheduler that can rebalance per-CPU cores; if a CPU is idle it can steal work from anther
CPU. Can also introduce process affinity; the preference of a process to be scheduler on
the same core83 83to deal with cache locality. This is a simplified version of the O(1) scheduler in Linux 2.6.

• Gang scheduling: run a set of related processes simultaneously on a set of CPUs. This is
useful for parallel applications (but requires global context switch across all CPUs).

• Real-time scheduling is also another problem: we may want to guarantee that tasks
complete in a certain amount of time84 84Also, there are hard and soft real-

time systems. Linux also implements
FCFS and RR scheduling which you can
select for tasks.

– Current linux impls two soft-time schedulers: SCHED_FIFO andSCHED_RR, each
with 0-99 static prioirty levels. Normal scheduling priorities apply to other pro-
cesses (SCHED_NORMAL) with range −20→ 19, 0 default.

– Processes can change their own priorities with syscalls (nice,
sched_setscheduler)

– 2.4-2.6: O(N) global queue, 2.6-26.22: per-queue run queue, O(1) scheduler (com-
plex, no fairness guarantee, not interactive), 2.6.3-CFS85 85completely fair schedulerbased on red-black trees

• O(1) scheduler is not great for modern computing; whereas in the past fore-
ground/background was a reasonable split heuristic nowadays a lot of background pro-
cesses are relevant.
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Definition 52 Ideal Fair Scheduling (IFS):

• Assume infinitely small time slice. If n processes, each runs at 1
n rate.

• Fair, interactive, and each process gets an equal amount of CPU time

• Would perform way too many context switches and have to scan all processes (O(n))

• Impractical

Definition 53 Completely Fair Scheduler (CFS):

• For each runnable process assign it a ‘virtual’ runtime – at each scheduling point the
process runs for time t and then increase it’s virtual runtime by t · weight (based on
priority)

• Virtual runtime monotonically increases. Scheduler selects process based on lowest
virtual runtime to compute it’s dynamic time slice w/ IFS

• Allow process to run, and then when it’s time is up repeat the process

• Implemented with red-black trees keyed by virtual runtime. Impl uses red-black tree
with nanosecond resolution.

• Tends to favour I/O bound processes by default (small CPU translates to low vruntime
– larger time slice to catch up to ideal)

Subsection 3.8

Libraries

• Systemcalls use registers, while C is stack-based

• Arguments pushed onto stack from right-to-left, rax, rcx, rdx caller (remaining callee)
saved

• Static libraries included at link time; i.e. .c -> .o -> exe, can also create archives via lots
of .o -> .a which are then linked with a .o with a main to produce an executable

• .so (shared object) are reusable; multiple programs can use the same .so. OS only has to
load one libc.so for example. Included at runtime

• ldd <executable< shows the shared objects used by an executable

• objdump -T <executable> shows the symbols in an executable. -d to disassemble
library

• Can also statically link, i.e. copy .o to executable. Static linking is useful for small pro-
grams that don’t need to be updated often and are also more portable (batteries included)
at cost of recompilation and larger binary sizes

• Dynamic libraries can break executables if their ABI changes

• c has a consistent struct abi for example, i.e. memory w/ fields matching declaration
order. Example of this may be function argument order/type or exposed struct member
order.

• Use semver to version libraries; x.y.z; x major (breaking), yminor (non-breaking), z patch
(bug fixes)

https://semver.org
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• dyn libraries make for easier development and debugging; can control dynamic linking
with env variables (LD_LIBRARY_PATH, LD_PRELOAD). For example we can make a
wrapper lib around liballoc that would output all malloc/free calls.

Subsection 3.9

Processes

• execlp: easier alternative to execvp. Does not return on success, but does return -1
on failure and sets errno. Lets you use c varargs instead of a string array

• dup, dup2: returns a new FD on success – copies the FD so that the old and new fd refer
to the same thing. dupwill return the lowest file descriptor, dup2will automically close
the newfd (if open) and then make newfd refer to the same thing as oldfd. Generally
use dup2 to make a new fd of any type you desire.
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1 #include <assert.h>
2 #include <errno.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <string.h>
6 #include <sys/wait.h>
7 #include <unistd.h>
8 // note: static is limited to a translation/compilation unit (i

believe) but this is commonly just a file. Should factcheck this.↪→

9 static void check_error(int ret, const char *message) {
10 if (ret != -1) {
11 return;
12 }
13 int err = errno;
14 perror(message);
15 exit(err);
16 }
17
18 static void parent(int in_pipefd[2], int out_pipefd[2], pid_t

child_pid) {↪→

19 const char* message = "Hello, world!\n";
20 int bytes_written = write(in_pipefd[1], message, strlen(message));
21 check_error(bytes_written, "write");
22 close(in_pipefd[1]); // need to close otherwise we have a

deadlock; child's read will until this happens (hence blocking
waitpid below)

↪→

↪→

23
24 int wstatus;
25 check_error(waitpid(child_pid, &wstatus, 0), "waitpid");
26 assert(WIFEXITED(wstatus) && WIFEXITSTATUE(wstatus) == 0);
27
28 char buf[4096]; // some large number. Can overflow
29 // use read end (0)
30 check_error(out_pipefd[1]);
31 int (bytes_read = read(out_pipefd[0], buf, sizeof(buf)));
32 check_error(bytes_read);
33 printf("Got %*s\n", bytes_read, buffer); // not a c-string from

the fd. Need to specify length.↪→

34 }
35
36 static void child(int in_pipefd[2], int out_pipefd[2], const char

*program) {↪→

37 // make write end of out_pipefd the stdout of the child
38 check_error( dup2(out_pipefd[1], STDOUT_FILENO), "dup2");
39 check_error( dup2(out_pipefd[0], STDIN_FILENO), "dup2"); // and

same for stdin↪→

40 // before dup2: 0, 1, 2, 3, 4 (3,4 are out_pipefd)
41 // after call to dup2: closes what fd1 points to (stdout) and

replaces stdout with the write end of out_pipefd↪→

42 // Convention: only have 3FD open; clean up after yourself. Close
the other file descriptors (3,4)↪→

43 check_error(close(out_pipefd[1]));
44 // and need to close all the other fds here (omited for brevity)
45 execlp(program, program, NULL);
46 }
47
48
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And continuing here to break across two pages...

1
2 int main(int argc, char* argv[]) {
3 if (argc != 2) { return EINVAL; }
4 // will have 3 fd open: 0, 1, 2 for stdin, stdout, stdrr
5
6 int in_pipefd[2] = {0};
7 int out_pipefd[2] = {0};
8 check_error(pipe(out_pipefd), "outpipe");
9 check_error(pipe(id_pipefd), "inpipe");
10 // 0 is read end, 1 is write end
11 // want to use the pipe to communicate with the child
12 // pipe before fork, so that both parent and child have access to

the pipe↪→

13 // replace child stdout to out_pipefd[1]
14 // and replace parent std
15 pid_t pid = fork();
16 if (pid > 0) { parent(in_pipefd, out_pipefd, pid); }
17 else { child(in_pipefd, out_pipefd, argv[1]); }
18 return 0;
19 }

Subsection 3.10

Virtual Memory

• We want to expose the entire address space to each processes, i.e. let each process think
that it has access to the whole space while in reality sharing it with other processes.

• MMU: usually a physical device whichmaps virtual addresses to physical addresses. One
technique is to divide memory into fixed-sized pages (usually 4096 bytes). Page in virtual
memory is a page; a page in physical memory is a frame.

• Early approach: segmentation: divide the address space into segments for code, data,
stack, and heap. Segments are of dynamic size. Are large and can be costly to relocate –
also leads to fragmentation (gaps of unused memory).

– Segments contain a base, limit, and permissions. Physical address via segment
selector:offset

– MMU checks offset within limit. If so, uses base+offset and does permission checks.
Otherwise it’s a segfault.

– For example, 0x1:0xff with segment 0x1, base 0x2000 and limit ox1ff will
translate to 0x20FF .

– Linux handles segmentation virtual memory by setting every base to 0 and then
limiting to the maximum amount

• CPUS have different levels of virtual addresses you can use. In this course we’ll assume
a 39 bit virtual address space used by RISC-V and other architectures

• Implemented by a page table indexed by VPN (Virtual page number) which translates to
the Physical Page Number (PPN)
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Figure 92. Simple page table

Subsection 3.11

Page Tables

• Naive page tables are not scalable. For example, if we have 4GiB 232 bytes of virtual
memory and a 4 kB (212 byte) page size size then the address space should be split into
220 pages. So the page table must have 220 entries, each of which requires 20 ( frame
number; 220 frames), a valid bit, a dirty bit, and read/write/execute permission bits – a
total of 25. So the total size of the page table is on the order of 222 bytes = 4MB (of which
we would need one per process)

Figure 93. Multi-level page tables save storage space for sparse allocations

• Page allocation usually implemented via a linked list. Allocate page: remove it from the
free list; deallocate – add back to free list.

• A page is used for each page table. There are 512 entries of 8 bytes each to make 4096
page tables, so each page table can be treated as an array of 512 page table entires (PTE).

• The PTE for L(N) points to the page table for L(N-1) – so follow these page tables until
L0 and that contains the PPN
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• Each table has it’s own root page table (L1).

• satp register stores root page table

• Think of the highest level page table storing pointers to blocks and then lower level page
tables storing pointers to segments within those blocks until we get to the exact memory
address we want. It just so happens that these blocks also take on the form of a page
table by themselves.

Figure 94. Since each page table has 512 entries – take offset on the address and then split off into 9-bit
chunks to get index into each level of the page tables. When we get to the last level simply apply the
offset to get the data within the page.

• Alignment: memory (by usual conventions) eventually line up with zero. For example
pages that are 4096-byte have the last 12 bits zeroed.

• It would be inconvenient if a page starts at 0x7C00 and has the last byte at 0x88FF; instead
in aligned systems a page starts at 0x7000 and ends at 0x7FFF . 86 86Alternatively addresses that are n-

byte aligned are cleanly divisible by n

Following is a snippet of code from class that simulates a page table. It’s not a complete im-
plementation but it’s a good example of how to use the page table to translate virtual addresses
to physical addresses.
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1 #include <sys/mman.h>
2 #define PAGE_SIZE 4096
3
4 #define LEVELS 3
5 #define PTE_VALID (1 << 0)
6
7 static uint64_t* root_page_table = NULL;
8 // A wrapper around mmap
9 static uint64_t* allocate_page_table() {
10 void* page = mmap(NULL, PAGE_SIZE, PROT_READ|PROT_WRITE,

MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);↪→

11 if (page == MAP_FAILED) {
12 int err = errno;
13 perror("mmap");
14 exit(err);
15 }
16 return page;
17 }
18
19 static void deallocate_page_table(void* page) {
20 if (munmap(page, PAGE_SIZE) == -1) {
21 int err = errno;
22 perror("munmap");
23 exit(err);
24 }
25 }
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1 // Looks up a virtual address in the page table and returns the
physical address↪→

2 static uint64_t mmu(uint64_t virtual_address) {
3 uint64_t* page_table = root_page_table;
4 uint64_t va = (uint64_t) virtual_address;
5 for (int i = LEVELS - 1; i >= 0; --i) {
6 uint8_t start_bit = 9 * i + 12;
7 uint64_t mask = (uint64_t) 0x1FF << start_bit;
8 uint16_t index = (mask & va) >> start_bit;
9
10 uint64_t pte = page_table[index];
11 if (!(pte & PTE_VALID)) {
12 printf("0x%lX: page fault\n", va);
13 return 0;
14 }
15
16 if (i != 0) {
17 page_table = (uint64_t*) ((pte >> 10) << 12);
18 continue;
19 }
20
21 uint64_t pa = ((pte & ~0x3FF) << 2) | (va & 0xFFF);
22 printf("0x%lX: 0x%lX\n", va, pa);
23 return pa;
24 }
25 __builtin_unreachable();
26 }
27
28 // page table entry from physical address
29 uint64_t pte_from_ppn(uint64_t ppn) {
30 uint64_t pte = ppn << 10;
31 pte |= PTE_VALID; // set valid bit
32 return pte;
33 }
34
35 // page table entry from page number
36 uint64_t pte_from_page_table(uint64_t* page_table) {
37 return pte_from_ppn(((uint64_t) page_table) >> 12);
38 }
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1 int main() {
2 assert(sysconf(_SC_PAGE_SIZE) == PAGE_SIZE);
3 uint64_t* l2_page_table_1 = allocate_page_table();
4 uint64_t* l1_page_table_1 = allocate_page_table();
5 uint64_t* l0_page_table_1 = allocate_page_table();
6 uint64_t* l0_page_table_2 = allocate_page_table();
7 root_page_table = l2_page_table_1; // global var to set root
8 // manually set values at 0xabcdef to something valid
9 l2_page_table_1[0] = pte_from_page_table(l1_page_table_1);
10 l1_page_table_1[5] = pte_from_page_table(l0_page_table_1);
11 // offset for 0xabcdef
12 l1_page_table_1[13] = pte_from_page_table(l0_page_table_2);
13 l0_page_table_1[188] = pte_from_ppn(0xCAFE);
14 // set page table entry to physical address 0xFACE
15 l0_page_table_1[188] = pte_from_ppn(0xFACE);
16 mmu(0xABCDEF); // [L2: 0][L1: 5][L0: 188] -> 0xCAFEDF
17 mmu(0x1ABCDEF); // -> OxCAFEDF
18 // two virtual addresses point to the same physical address here.
19 // this is how shared memory would be implemented
20 deallocate_page_table(root_page_table);
21 root_page_table = NULL;
22 return 0;
23 }

1 int main() {
2 assert(sysconf(_SC_PAGE_SIZE) == PAGE_SIZE);
3 uint64_t* l2_page_table_1 = allocate_page_table();
4 uint64_t* l1_page_table_1 = allocate_page_table();
5 uint64_t* l0_page_table_1 = allocate_page_table();
6 uint64_t* l0_page_table_2 = allocate_page_table();
7 root_page_table = l2_page_table_1; // global var to set root
8 // manually set values at 0xabcdef to something valid
9 l2_page_table_1[0] = pte_from_page_table(l1_page_table_1);
10 l1_page_table_1[5] = pte_from_page_table(l0_page_table_1);
11 // offset for 0xabcdef
12 l1_page_table_1[13] = pte_from_page_table(l0_page_table_2);
13 l0_page_table_1[188] = pte_from_ppn(0xCAFE);
14 l0_page_table_1[188] = pte_from_ppn(0xFACE);
15 mmu(0xABCDEF); // [L2: 0][L1: 5][L0: 188] -> 0xCAFEDF
16 mmu(0x1ABC007); // translates -> 0xFACE007
17 deallocate_page_table(root_page_table);
18 root_page_table = NULL;
19 return 0;
20 }

• Let’s assume our program uses 512 pages. What’s the min and max number of page
tables we need? (with a 3-level paging system)

– Min: 3 page tables total; L2 -> L1 -> 512 entries in L0
– Max: 1 entry per L1, L0 so 512 tables each, and then 1 table (can only have 1 table

for the entry point) in L0 and then -> so 512 * 2 + 1 = 1025 pages tables.
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• Example: how many levels do we need? 32 bit virtual address space ,page size of 4096,
PTE size of 4 bytes. Each page table should fit in a single page.

– Number of PTEs: log2(# PTEs per page) is the number of bits to index a page table
– number of levels = virtual - offset

index = 32−12
10 2

• Page tables for every memory access is slow: solution is to use caching

• Programs tend to have a lot of memory access patterns and only use a few pages at a
time. TLB87 87Translation Lookaside Bufferworks as cache for virtual address to physical address translation

Subsection 3.12

Threads

• Threads share memory and enable concurrency within the same process

• pthread!

• join is the thread equivalent of wait

• pthread_detach release their resourceswhen they terminate. Otherwise (by default)
they are joinable and must be joined before resources are released.

3.12.1 Threads Implementation

• Kernels can be implemented in the user or at the kernel level.

• User level usually involves fast switching at the user level. These are fast to create, but
if one thread blocks it will block the entire process.

• Kernel level threads can deal with these blocking threads, but are slower since they
require syscalls.

• User level threads can be desirable because they can be made to only depend on the c
standard library, which is portable

• Many-to-one threads map multiple user threads to one kernel thread

• One-to-one threads map one user thread to one kernel thread. pthread does this.

• Many-to-many is a hybrid approach. This leads to a complicated implementation.

• Threads complicate the kernel. For example, how should forkwork with a process that
has multiple threads? Do we just copy all threads over? Linux will only copy the thread
that called fork into a new process and an option at pthread_atfork which can be
used to control the behaviour.

• What about signals? On linux this will just be any random thread within that process.

• Instead of many-to-many a common technique is to use a thread pool. This creates a set
number of threads and a queue of tasks.

• Cooperative scheduling: threads must call yield. Pre-emptive scheduling can be im-
plemented by forcing threads to call yield.
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3.12.2 Useful tools

• tailq (sys/queue.h) is a header that has a bunch of macros for working on singly
and doubly linked lists, queues, and circular queues.

– i.e. TAILQ_ENTRY is a macro that defines the pointer relations for a doubly linked
tail queue

– TAILQ_FOREACH is a macro that iterates over a doubly linked tail queue
– TAILQ_INSERT_SAFE is a macro that inserts an element into a doubly linked

tail queue at the tail
– TAILQ_REMOVE is a macro that removes an element from a doubly linked tail

queue

• ucontext (ucontext.h) is a header that largely wraps around ucontext_twhich
holds the context for a user thread of execution, i.e. stack, saved register, and blocked
signals.

– Useful methods include getcontext, setcontext, makecontext, and
swapcontext
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1 #include <errno.h> // errno
2 #include <stddef.h> // NULL
3 #include <stdio.h> // perror
4 #include <stdlib.h> // exit
5 #include <sys/mman.h> // mmap, munmap
6 #include <sys/signal.h> // SIGSTKSZ
7 #include <ucontext.h> // getcontext, makecontext, setcontext,

swapcontext↪→

8 #include <valgrind/valgrind.h> // VALGRIND_STACK_REGISTER
9
10 static void die(const char* message) {
11 int err = errno;
12 perror(message);
13 exit(err);
14 }
15
16 static char* new_stack(void) {
17 char* stack = mmap(
18 NULL,
19 SIGSTKSZ, // canonical size for signal stack
20 PROT_READ | PROT_WRITE | PROT_EXEC,
21 MAP_ANONYMOUS | MAP_PRIVATE,
22 -1,
23 0
24 );
25 if (stack == MAP_FAILED) {
26 die("mmap stack failed");
27 }
28 VALGRIND_STACK_REGISTER(stack, stack + SIGSTKSZ);
29 // tells valgrind this is an unique stack
30 return stack;
31 }
32
33 static void delete_stack(char* stack) {
34 if (munmap(stack, SIGSTKSZ) == -1) {
35 die("munmap stack failed");
36 }
37 }
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1
2 // the stacks we're going to use in this demo
3 static ucontext_t t0_ucontext;
4 static ucontext_t t1_ucontext;
5 static ucontext_t t2_ucontext;
6
7 static char* t1_stack;
8 static char* t2_stack;
9
10 static void t2_run(void) {
11 printf("T2 should be done, switch back to T0\n");
12 delete_stack(t1_stack);
13 setcontext(&t0_ucontext);
14 }
15
16 static void t1_run(void) {
17 printf("Hooray!\n");
18 }
19
20
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1
2 int main(void) {
3 /* Creates a new context by copying over the current context, this

copies all its↪→

4 * registers, and a pointer to its stack (the default kernel
allocated one). */↪→

5 getcontext(&t0_ucontext);
6
7 /* If we setcontext or swapcontext to t0_context, it'll be as if

we just↪→

8 * returned from that getcontext call. If you uncomment the line
below↪→

9 * you'll be in an infinite loop! */
10 // setcontext(&t0_ucontext);
11
12 /* Let's create a context that'll execute the run function */
13 t1_stack = new_stack();
14 getcontext(&t1_ucontext);
15 t1_ucontext.uc_stack.ss_sp = t1_stack;
16 t1_ucontext.uc_stack.ss_size = SIGSTKSZ;
17 /* Uncomment this line to switch to another context when this one

ends.↪→

18 * By default the process will just exit if a thread makes it to
the end↪→

19 * of the function.
20 */
21 // t1_ucontext.uc_link = &t2_ucontext;
22 // modifies an initialized context such that when it runs it will
23 // call the functions with the arguments provided
24 makecontext(
25 &t1_ucontext, /* The ucontext to use, it must be initialized

with↪→

26 * getcontext */
27 t1_run, /* The function to start executing */
28 0); /* This is how many arguments we're going to pass to the

function */↪→

29
30 t2_stack = new_stack();
31 getcontext(&t2_ucontext);
32 t2_ucontext.uc_stack.ss_sp = t2_stack;
33 t2_ucontext.uc_stack.ss_size = SIGSTKSZ;
34 makecontext(&t2_ucontext, t2_run, 0);
35
36 /* If we just setcontext here when we run T2 after T1 finishes,

we'll↪→

37 * get into an infinite loop again. */
38 // setcontext(&t1_ucontext);
39 // exchanges currently active context
40 swapcontext(&t0_ucontext, &t1_ucontext);
41
42 printf("Main is back in town\n");
43 delete_stack(t2_stack);
44
45 return 0;
46 }
47
48
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Subsection 3.13

Locks

• Concurrent actions accessing the same variable with at least one write can cause a data
race

• Atomic operations are operations that are guaranteed to be executed in a single step, i.e.
non-preemptible.

Definition 54 TAC (three-address-code) is an intermediate representation that is used to represent a pro-
gram in a way where each instruction is atomic – this is useful for reasoning about data
races and can be easier to read than assembly. They have the form

1 result := operand1 operator operand2

For gcc we can see the tac by using the -fdump-tree-gimple or fdump-tree-all
flags.

Let’s consider some GIMPLE code produced from a function that increments an integer
stored at address pcount

1 D.1 = *pcount;
2 D.2 = D.1 + 1;
3 *pcount = D.2;

Figure 95. Pre-emption possibilities. Let’s say we have a producer-consumer model with read/write
from two threads. There are many possible orderings of these GIMPLE’d instructions, of which some
produce undesirable results
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1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
2 // or: pthread_mutex_t m; pthread_mutex_init(&m2, NULL)
3
4 pthread_mutex_lock(&lock);
5 // ... critical section: only one thread can access at a time
6 pthread_mutex_unlock(&lock)
7 // careful: deadlocks can happen with multiple mutexes.
8
9 pthread_mutex_trymutex(&lock); // returns 0 if it was able to lock,

otherwise an error code↪→

10
11 pthread_mutex_destroy(&lock)

How are these implemented?
A naive implementation may look as follows:

1 void init(int *l) { *l = 0; }
2
3 void lock(int *l) {
4 while (*l == 1);
5 *l = 1;}
6
7 void unlock(int *l) { *l = 0; }

However, this is 1) not safe (both threads can be in the critical section) and not efficient
due to the busy wait.

Hardware requirements to
implement software locks:
atomic load and stores, and
instructions execute in order

Better approaches include Peterson’s algorithm and Lamport’s bakery algorithm. They
have some scalability issues and processors may not execute in order.

Here’s another attempt using amagical atomic function: compare_and_swapwhich re-
turns the original value pointed to, and only swaps if the original value equals old and changes
it to new.

1 void init(int *l) { *l = 0; }
2 void lock(int *l) { while (compare_and_swap(l, 0, 1)); }
3 void unlock(int *l) { *l = 0; }

compare_and_swap is
commonly implemented in
hardware; on x86 platforms
this is implemented using the
cmpxchg instruction

This solves the concurrency issue however it still is not efficient due to the busy wait.

1 void lock(int *l) {
2 while (compare_and_swap(l, 0, 1)) {thread_yield(); }}

This is better, but still not ideal. Multiple threads waiting for an event can be awoken
when the vent occurs, but only one will win88 88thundering herd problem. This cycle will repeat until the herd dies down,
but not without causing many freezes along the way. Some sort of order must be placed on
the herd – maybe a FIFO queue?
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1 void lock(int *l) {
2 while (compare_and_swap(l, 0, 1)) {
3 // add myself to the lock wait queue
4 thread_sleep(); }}
5 void unlock(int *l) { *l = 0;
6 if (/* threads in wait queue */) {
7 // wake up one thread
8 }}

However this suffers from two issues: 1) lost wakeup and 2) wrong thread getting the lock
Consider T1, T2 with T2 holding the lock; what if the context gets switched to T2 before

T1 is able to successfully add itself to the wait queue? Then T1 will never get woken up since
when T2 unlocks T1 will not be in the wait queue.

Let’s consider another scenario: we have three threads T1, T2, and T3, and T2 is holding
the lock with T3 in T1 in queue to lock the lock (with T3 before T1). T2 may try to wake up
the lock, but if the OS swaps to T1 before T2 can wake up T3, then T1 will acquire the lock
before T3 does; T1 stole the lock from T3.

A lock-guard pair can be used to fix these problems

Figure 96. A lock-guard pair can be used to make the lock and unlock functions atomic themselves
to avoid ugly synchronization issues like those mentioned above

However, this does not solve the data race problem: what if a thread gets inter-
rupted right before thread_sleep (but after being added to the wait queue). So a
thread_wakeup may try to wakeup a thread that isn’t sleeping yet. A solution may be
to poll thread_wakeup, but this falls back into the busy waiting problem we had before.

A data race is when two concurrent actions access the same variable and at least one of
them is a write; we can have as many readers as we want.

Read-write locks (pthread_rwlock_t & co.) are designed to capture this behaviour;
multiple threads can hold a read lock (pthread_rwlock_rdlock) but only one thread can
hold a write lock (pthread_rwlock_wrlock) and will wait until current readers are done.



ECE353 Operating Systems Semaphores 159

Figure 97. rwlock impl

Subsection 3.14

Semaphores

Locks (mutexes) enforcemutual exclusion, but not necessarily ordering. But how canwe ensure
an ordering between two threads? For example, how can we make one thread always print
first?

Definition 55 Semaphores have a value89 89Usually an integer ≥ 0that is shared between threads and provide two operations:
wait (atomic decrement, blocking) and post (atomic increment). Initial value can be set
to whatever.

Figure 98. Semaphore methods. pshared can be set to 1 for IPC (needs to live in shared mem for IPC)
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Figure 99. A snippet that uses semaphores as signals to print_first first and print_second
second

A semaphore is really a gener-
alized mutex; we can consider
a mutex as a semaphore with
a value of 1.

Let’s consider the producer-consumer problem:

Figure 100. All consumers share index ic, and all producers share index ip

We can ensure producers never overwrite filled slots by using a semaphore to track the
number of empty slots;
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Figure 101. Consumer post-s to the empty slots semaphore when done and producer wait-s on the
empty slots semaphore before writing

A similar semaphore can be used to track the number of filled slots such that consumers
never read empty slots;

Figure 102. Two semaphores ensure proper order
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Figure 103. Note: Initializing both semaphores to 0 will cause the program to hang because none of the
producers will be able to produce anything and then the program just gets stuck

Subsection 3.15

Locking

Languages offer support for locking and syntactic sugar. For example, java offers the syn-
chronized keyword:

Another abstraction on top of these synchronization primitives are condition variables
which enable inter-thread signaling.

These condition variables must be paired with a mutex90 90One mutex can protect multiple con-
dition variables

; any calls to wait must already
hold it (but signal/broadcast may not). The mutex is used to protect the condition variable
itself, i.e. to prevent undesirable state changes in the condition variable due to synchronization
problems.
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Figure 104. Condition variables offer a more elegant solution to the producer-consumer problem

Figure 105. Example: This piece of code is a problem because there is no mutex on the condi-
tion=true line which can cause the while to produce undesired behaviour. Consider the case where
if thread 1 executes first and then it gets swapped away right at the first !condition. Then in thread
2 the condition is to be set to true and the signal is sent without anything happening – which causes
the pthread_cond_wait to hang. This can be fixed by locking and unlocking around the condi-
tion=true and signal lines.
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Figure 106. Can we change the while to an if?

What if we want to avoid polling by changing the while to an if? A problem may occur
here.

1. T1 goes first w/ initial condition false, cond 0, mutex 0

2. T1 locks mutex, so no races to worry currently

3. Put ourselves into condition variable’s wait queue, and then unlock mutex

4. Thread 2 runs: locks mutex, sets condition to true, unlocks, and signals

5. Thread 1 can now wake up, condition is true, and then it can continue working

6. But Thread 3 can also wake up, set condition to true, and then transfer context to T2
which signals to T1.

• Now T1 wakes up and by the time it gets to the unlock condition is false,
which is a problem (since we wanted condition to be true T1 unlocks (as per
the if statement))

Semaphores can be thought of as a special case of condition variables: though one can be
implemented with the other it can get messy. Complex conditions are generally implemented
with condition variables to keep things clean.

Definition 56 LockingGranularity is the extent towhich a lock is held. Toomany locks or locks covering
large swathes of the program can slow down your program, so it’s important to design
critical sections carefully.
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Subsection 3.16

Deadlocks

Deadlocks are a problem. Conditions for deadlocks include:

• mutual exclusion

• hold and wait (have a lock and try to acquire another)

• No preemption (can’t take simple locks away)

• circular wait (waiting for a lock held by another process)

Figure 107. This can deadlock depending on the order of the processes trying to get the locks!

Figure 108. Enforcing order is one way to prevent deadlocks
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Figure 109. Alternatively, try_lock can be used to self-pre-empt in order to avoid deadlocking

See the banksim.c example
// TODO: take exercpts from banksim

Comment Note from review session: fork from a pthread will fork with just the calling thread.

Subsection 3.17

Disks (SSDs)

SSDs are basically a big block of transistors (flash memory) that persist bits.

Figure 110. SSD devices are partitioned into block, plane, and pages.

Comment Typical page sizes for SSDs are about 4KiB, reading a page is 10 µs, writing a page is 100 µs,
and erasing a block is about 1ms

Most commercial SSDs are build off of flash memory91 91Though there are some that use
DRAM and more recently 3D X-Point
(Optane)

, we may only 1) read complete
pages and 2) write to freshly erased pages. For standard commercial SSD implementations
erasing is done per-block, so an entire block must be erased before writing to it. This means
that writing can be slow since we may need to create a new block. Various optimizations can
be done at an OS level to help optimize SSDs, mainly via garbage collection: moving live pages
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to new blocks so that the increasingly sparse old blocks can be erased. At the SSD-device level
the disk controller has no idea which blocks are still alive, so the OS must step in with the
TRIM command to inform the SSD of unused blocks.

3.17.1 RAID

Multi-disk schemes distribute data on multiple disks to prevent data loss and increase through-
put.

• RAID 0 (striped volume): data is ‘striped’ across all disks in the array, resulting in a N -
fold speedup with the number of disks with the drawback of introducing the possibility
of data loss across all the disks on disk failure.

• On the other extreme, RAID 1 mirrors all data across all disks. Though it offers good
reliability and performance, it incurs an extremely high cost for redundancy.
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• A middle ground is RAID 4, which uses a dedicated parity disk which stores the XOR of
the other copies. This means that the RAID array can still satisfy reads even if one drive
fails.

RAID 4 requires at least 3 drives and allows for us to make use of 1 − 1
N of available

space. Read performance is improved on the order of N − 1 (ignoring parity) but there
is additional complexity on write
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• RAID 5 is an improved RAID 4 by distributing parity blocks across all disks, easing the
write bottleneck on a single drive.

Figure 111. Note p parity blocks are distributed across all disks. Parity blocks are for a particular stripe
(and are embedded in the stripe), so no parity block corresponds to other data blocks in the same disk

• RAID 6 includes an extra parity block per stripe to recover from 2 drive failures. However
disk utilization drops to 1 − 2

N of the total disk space and write performance suffers
compared to RAID5 due to more parity calculations.

Subsection 3.18

File Systems
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Figure 112. Common methods for interacting with the filesystem

Figure 113. Directory methods

File tables are stored in the PCB (process control block) and point to the underlying file in the
OS.

Each processes has their own file table in its PCB92 92File descriptors are indexs into that
table

and these PCB file table entries then
point to a global open file table (GOF)which holds information about the flags and seek position
etc. This also houses the vnode93 93virtual nodewhich holds information abotu the file (which can be sockets,
regular files, mounts, pipes, etc). This implies that the current position in file is shared between
processes and seek operations in one process leads to seek in the other processes. However,
opening the same file in processes after a fork creates multiple GOF entries.
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Figure 114. For example, this snippet will produce two LOF (Local Open File table) and three GOF entries

How are files stored on disk?

• Contiguous allocation: Space efficient and with fast random access (block =
floor(offset/blocksize)). But cannot be resized easily and fragmentation is a problem.

• Linked allocation: Each block has a pointer to the next block. This is more flexible but
random access is slower.

• FAT (File Allocation Table): The linked list is no longer on-disk but s instead stored on
a separate table. The FAT can be held in memory so random access is sped up.

• Indexed Allocation: Each block has a pointer to a table of pointers to the next block.
However file size is limited by the maximum size of the index block.

Example An index block stores pointers to data blocks only. Disk blocks are 8Kib, pointer to a block
is 4 bytes. What is the maximum size of a file managed by this index block?
There are 8Kib

4b = 211 pointers (and addressable blocks needed) so the total number of bytes
is 211 ∗ 213 = 224 = 16Mib

Subsection 3.19

inodes
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Figure 115. socket sets protocol and type of socket

inodes describe a file system object. They contain metadata and pointers to block(s)94 94Small files can just use direct point-
ers, whereas larger files have additional
nodes with pointers to more blocks.
Very very small files may live entirely
in the inode

Figure 116. # pointers per indirect table: 213/22 = 211. Num of addressable blocks = 12+211 +(211)2 +
(211)3 ≈ 233. Total bytes is 233 · 213 = 64T iB

Hard links95 95Directory entryare pointers to one inode. Multiple hard links can point to the same inode,
deleting a file only removes a hard link. Soft links are paths to another file, and are stored as a
file. They are not pointers to an inode, but rather a path to another file. Accessing a soft link
resolves these links until we reach an inode, an unresolvable soft link leads to an exception.
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3.19.1 Everything is a file

In UNIX everything is a file96 96Or some type thereof. Block devices are files, sockets are files, pipes are files, etc.
Directories are files that store filenames and pointers to inodes.

Figure 117. Some things that are/are not stored in an inode

Note that the inode does not know about the softlinks to it, nor the location of its hard
links. However it does store the number of hard links to it so that the kernel can erase the
file97 97use stat to explore this.

3.19.2 Caches

Writing to the disk is slow so file blocks are cached in memory in the filesystem cache98 98Explore temporal and spatial locality. A
daemon periodically writes changes to the disk99 99Can manually trigger via flush or

sync
. Deleting a file then involves three steps: 1.

removing it’s directory entry, releasing the inode to the pool of free inodes, and 3. returning
blocks to the pool of free blocks. Since crashes can happen at any time, UNIX systems are
generally built on journaling filesystems, which are filesystems that keep a circular buffer of
changes made. This allows for recovery from crashes as well as improving performance by
reducing the number of writes to the disk.

Subsection 3.20

Sockets

Sockets are another way to enable IPC, but over the network (i.e. possibly between differ-
ent machines). Use follows a server-client model, where the server sets up sockets via the
socket, bind, listen, and accept system calls. The client has socket and con-
nect. socket creates a socket, bind attaches the socket to some location (file, port, etc),
listen to indicate that connections are to be accepted, and accept to accept them. con-
nect connects to an existing socket and enables the socket to send/receive data. UNIX sockets
are for IPC between processes on the same machine, whereas AF_INET or AF_INET6 is for
IPv4 and IPv6 between machines over the network respectively. Sockets can usually be of two
type-s: stream (TCP) and datagram (UDP). TCP is reliable and handshakes and ordered, while
UDP is unreliable and unordered.

• bind sets socket to an address. Different sockaddr structures are available for differ-
ent protocols



ECE353 Operating Systems Memory Hierarchy 174

• int listen (int socket, int backlog) system call sets queue limits for
incoming connections

• int accept(int socket, struct sockaddr* address, socklen_t*
address_len) system call accepts a connection on a socket and may block until a
connection is made. Returns a new FD that we can write to.

• int connect(int sockfd, const struct sockaddr* addr,
socklen_t addrlen) system call connects to a socket. If it succeeds sockfd can
be used as a fd.

• Instead of read or write there is also send and recv system calls which also have
flags as well as sendto/recvfrom which takes an address.

Comment TODO: sockets example

Subsection 3.21

Memory Hierarchy

There is an inversely proportional relationship between computer memory capacity and
speed/price, so modern computers use a combination of different memory devices i.e. CPU
Cache -> RAM -> SSD -> HDD to store and manage data. However, we want to abstract this
away for the user; each level wants to pretend it has the speed of the level about it and the
capacity of the layer below. This is done through paging: something we’ve talked about before
but will go into further detail now.

Here are some common page replacement policies, or what to do when there is a page
fault100 100When a request to the page table is

made but the requested page isn’t cur-
rently in memory1. Optimal: replace page that won’t be used the longest

2. Random: Replace a random page
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3. FIFO: replace oldest page first

4. LRU: replace page that hasn’t been used for the longest time

Figure 118. Example of using the optimal page replacement policy. Note that 4 gets replaced by 5 since
it will get used after 1, 2, 3. Though in this contrived example we know what pages our program will
access ahead of time, in practice this is not the case.

Figure 119. A LRU example with FIFO to break ties

A downside of using LRU is that it has to search all pages. This can be implemented via a
counter or a clock. In software it’s also too expensive: you need a doubly linked list of pages
and a ton of traversal/manipulation time. In practice we just use approximate LRU101 101LRU is just an approximation of op-

timal anywaysTLDR:

• Optimal isn’t realistic

• Random works surprisingly well and avoids worst case

• FIFO: easy to implement but suffers for Beladay’s anomaly102 102Increasing the number of page
frames results in an increase in the
number of page faults for certain mem-
ory access patterns. FIFO suffers from
this but stack-based (LRU) doesn’t

• LRU: expensive to implement

A more sophisticated page replacement algorithm is the clock replacement algorithm

Definition 57 Clock Page Replacement Algorithm:

• Keep a circular list of pages in memory

• Use a reference bit for each page in memory

• Has a hand pointing to the last element examined

To insert a new page:

• Check the hand’s reference bit: if 0 place page + advance
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• If 1: set to 0, advance hand, repeat

Page accesses set the reference bit to 1103 103And I believe set the hand to the read
bit

This is kind of just like using a
circular buffer to maintain our
page table, but with a pseudo-
LRU policymaintained via set-
ting reference bit to 1 on ac-
cesses

Subsection 3.22

Memory Allocation

There are two main ways to allocate memory: static and dynamic allocation. Static allocation
is done at compile time, and dynamic allocation is done at runtime. Static allocation is pretty
easy to implement and understand: just give it a fixed size and you’re done. However, it can
be wasteful or limiting since we don’t always know how much memory we’ll need at compile
time. We can allocate dynamicmemory on the stack or the heap. c largely does stack allocation
for you, but the problem is that the scope of stack allocated memory is limited to the scope
in which it was allocated. However, dynamic allocation can pose a problem: since we allocate
memory in different sized contiguous blocks, compaction is not possible and every allocation
decision is permanent. This can leave holes in memory that need to be managed and taken
into consideration when allocating memory Note that in c previous allo-

cations cannot be relocated by
the runtime (like Java does,
since Java can move the mem-
ory around for you)

Generally speaking there are three cases that lead
to fragmentation:

1. Different allocation lifetimes

2. Different allocation sizes

3. Inability to relocate previous allocations

Also, there exists two different types of fragmentation: external and internal. External
fragmentation is when different sized blocks are allocated and there isn’t enough space be-
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tween the blocks to allocate. Internal fragmentation occurs whenwe allocate fixed sized blocks
and there is excess space within the blocks.

In our malloc implementations we want to minimize fragmentation104 104Large applications i.e. chrome will
actually ship their own allocators to
minimize fragmentation

. As a guiding
heuristic we want to reduce the number of holes between blocks of memory, and if there are
holes, we want them to be as large as possible.

Most implementations use a free list: free blocks are chained together with a doubly linked
list. Allocation is done by finding a suitable block and removing it from the free list, and
deallocation is done by moving the block back to the free list.

There are three general heap allocation strategies best(find smallest block that can satisfy
the request), worst (choose largest block), and first fit (choose first fit that can satisfy the re-
quest). From simulations best fit tends to leave very large holes and very small holes, worst it
tends to be the worst in terms of storage utilization, and first-fit tends to be the best for leaving
behind average-sized holes.

3.22.1 Buddy Allocation

Typically allocation requests are of size 2n, so if we restrict allocations to powers of 2 we may
enable a more efficient allocator. We restrict requests to be of size 2k , 0 ≤ k ≤ N , where N is
the maximum size of the heap. We then maintain a free list for each size class. When we want
to allocate a block of size 2k , we first check the free list for that size class. Our implementation
uses N + 1 free lists of each size. To meet a request of size 2k , we search the free list until
we find a big enough block. If needed we recursively divide the block until it’s the correct
size, inserting buddy blokcs into free lists. Deallocations involve coalescing the buddy blocks
together (recursively if needed)

Figure 120. In this example we see the 256 byte block being split into two 128 byte blocks (buddy pair)
and so forth. A request of size 28 or 32 may be fulfilled by any of the blocks of size 32

And what happens when we free the 64 byte block?
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Figure 121. Before freeing size 64

Figure 122. After freeing the size 64 block

Buddy allocators are extremely common and are used in the Linux kernel as well. They are
fast and simple compared to generally dynamic allocation, and avoids external fragmentation
by keeping free physical pages contiguous. However it can suffer from internal fragmentation
due to the rounding up of allocation size.

3.22.2 Slab Allocators

Slab allocators take advantage of fixed size allocations by allocating objects of the same size
from a dedicated pool. Every object type has its own pool with blocks of the correct size,
preventing internal fragmentation. It can be though of as a cache of slots105 105Think of the ext2 filesystem we im-

plemented in lab 6 where we havemem-
ory (blocks) and bitmaps to track which
ones are free or not

A hybrid scheme may be made by combining buddy allocation with slab allocation. This
is done by allocating a slab of objects from the buddy allocator, and then allocating objects
from the slab via the slab allocator.
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Figure 123. The buddy allocator allocates a slab of objects for the slab allocator to use. Here we have
allocated two blocks each for objects of size A and B. Then the slab allocator manages the slabs, mini-
mizing internal fragmentation

Subsection 3.23

Virtual Machines

Virtual machines fulfill the goal of running multiple operating systems on a single machine
while allowing each OS to believe they are the only ones running. There are two levels of
hypervisors: type 1 (bare metal) and type 2 (hosted). Type 1 hypervisors run directly on the
hardware, while type 2 hypervisors run on top of an existing OS.

Note that virtual machines are not emulation, whereas emulation translates one ISA to
another (x64 <-> ARM), our gues operation system executes instructions directly using the
same ISA. Some use cases allow for emulation, e.g. Wine or NEW emulators. A VM could use
emulation to run a VM for a different ISA but it would be slow. VMs also must enable pause
and play; like how we can pause and play threads and swap context there, a hypervisor must
switch contexts between entire virtual machines. The hypervisor must also isolate guests from
each other and the host while setting limits on resource use. Further optimizations on resource
use can also be achieved via hypervisors: since data centers also involve many servers running
at once (often not making use of all of their resources), instead of having multiple lightly used
physical systems we could multiplex many of them onto a single machine. The key abstraction
is the vCPU, which is a virtual CPU that can be scheduled by the hypervisor. Whereas processes had the

PCB act as a virtual CPU, it
didn’t contain enough infor-
mation to virtualise the entire
CPU (just enough for user-
mode processes)

. Permissions
wise the guest OS runs in the usual modes (kernel ring 0, user ring 3), and the hypervisor in
ring -1 to control the guest. Type 2 hypervisors must create a virtual kernel and user mode.

3.23.1 Type 2 hypervisors

One strategy for implementing a type 2 hypervisor is trap and emulate: all instructions run
normally and privileged ones generate a trap (wrong mode), which the hypervisor must then
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handle by emulate/situating the operation and resuming control to the guest. This slows down
otherwise native execution.

Unfortunately trap and emulate does not always work: some instruction sets are not clear
between privileged and non-privileged instructions (these instructions are untrappable) 106 106x86 is guilty of this, e.g. popf in-

struction which loads the flags register
from the stack and behaves differently
for kernel and user modes. Additional
reading: chroot, docker, bsd jails, solaris
zones.

.
Untrappable instructions require another approach: binary translation. Instead of depend-
ing on the processor to detect the privileged instructions and trap to the hypervisor/host to
handle, binary translation inspects the instruction stream on-the-fly in software and rewrites
untrappable instructions with the appropriate operations.

Ring -1 (hypervisormode)was
introduced in 2005/2006 by in-
tel/amd and defines a mode
where a host kernel can man-
age isolation for guests and
hardware virtualisation

3.23.2 Virtualised Scheduling

We must map vCPUs to physical CPUs107 107Like how we can map threads (i.e.
virtual processes) to processes

.
Approaches include

• CPU assignment: 1:1 mapping of vCPUs to pCPUs

• Overcommitting: assigning more vCPUs than pCPUs. This can have issues e.g. the guest
OS running too unpredictably for soft real-time tasks.

More complexities present themselves with memory management, since we want the
guest kernel to be able to think that it is managing the entire physical address space – so we
have to virtualize that too. The problem gets worse if memory is overcommitted, too. This is
usually solved via nested page tables, where the guest kernel has its own page tables that map
to the physical memory, and the hypervisor has its own page tables that map to the guest page
tables. Overcommitted memory can be implemented via double-paging where the hypervisor
does its own page replacement, but this may be undesirable since the guest most likely knows
its own memory access patterns better. Optimizations can be made by having the guests share
duplicate pages108 108Duplicate detection via hashing is

one method
and using CoW.

Likewise, the hypervisor must virtualize the I/O devices109 109Which may or may not physically
exist

, which can be done via device
emulation or pass-through. For some I/O implementations the hypervisor must perform some
translation between the guest and host, e.g. for network devices the hypervisor must trans-
late between the guest’s network stack and the host’s network stack. Hardware solutions e.g.
IOMMU can be used to help with this by providing a virtual address space exclusively for the
guest to use, giving the VM exclusive control over the device and enabling native speed oper-
ation of devices e.g. GPUs in VMs. Likewise, disks are virtualized (usually via disk images and
mounting and stuff) to give each VM the impression that it has a whole disk.
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Uses for VMs include isolating applications from each other, running multiple operating
systems on the same machine, and running multiple instances of the same OS (e.g. for testing).
Containers are kind of like VMs but usually share the host kernel and are more lightweight.

Subsection 3.24

Your first kernel module

• printk is the kernel’s equivalent of printf

– printk(LOG_LEVEL, "format string", args...)
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1 #include <linux/module.h>
2 #include <linux/printk.h>
3 #include <linux/proc_fs.h>
4 #include <linux/seq_file.h>
5 #include <linux/sched.h>
6
7 static struct proc_dir_entry *count_entry;
8
9 static int count_show(struct seq_file *s, void *v) {
10 struct task_struct *p;
11 u64 count = 0;
12 for_each_process(p) {
13 // a macro provided by kernel to go over all processes
14 ++count;
15 }
16 seq_printf(s, "%llu\n", count);
17 return 0;
18 }
19
20 static int __init proc_count_init(void)
21 {
22 pr_info("proc_count: init\n");
23 // create an entry called count in the procfs:
24 // creates an entry called /proc/count w/ perm 0644
25 // the last argument is a pointer to a function that will be called
26 // when the file is read
27 // the function takes a seq_file and a void* as arguments
28 // in our case, our count_show function will be called on read
29 // which will write the number of processes to the seq_file
30 // which will be read by the user
31 count_entry = proc_create_single("count", 0644, NULL, count_show);
32 if (IS_ERR(count_entry)) {
33 return PTR_ERR(count_entry);
34 }
35 return 0;
36 }
37
38 static void __exit proc_count_exit(void)
39 {
40 pr_info("proc_count: exit\n");
41 proc_remove(count_entry);
42 }
43
44 // register init and exit functions
45 // can use dmesg to see the log messages on kernel load/exit
46 module_init(proc_count_init);
47 module_exit(proc_count_exit);
48
49 MODULE_AUTHOR("Jonathan Eyolfson");
50 MODULE_DESCRIPTION("Count the number of processes");
51 MODULE_LICENSE("GPL");

Makefile:
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1 ifneq ($(KERNELRELEASE),)
2 obj-m := proc_count.o
3 else
4 KDIR ?= /lib/modules/`uname -r`/build
5
6 default:
7 $(MAKE) -C $(KDIR) M=$$PWD modules
8
9 modules_install:
10 $(MAKE) -C $(KDIR) M=$$PWD modules_install
11
12 install:
13 $(MAKE) -C $(KDIR) M=$$PWD install
14
15 clean:
16 $(MAKE) -C $(KDIR) M=$$PWD clean
17 endif

Install module into running kernel:
sudo insmod proc_count.ko
To check kernel logs for this:
sudo dmesg -l info
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